Your browser doesn't support javascript.
loading
Carboxyl-Decorated UiO-66 Supporting Pd Nanoparticles for Efficient Room-Temperature Hydrodeoxygenation of Lignin Derivatives.
Yangcheng, Ruixue; Li, Jingwei; He, Jiadai; Zheng, Yuxin; Yu, Haijie; Chen, Cailing; Wang, Jianjian.
Afiliación
  • Yangcheng R; School of Chemistry and Chemical Engineering, State Key Laboratory of Coal Mine Disaster Dynamics and Control, Institute of Advanced Interdisciplinary Studies, Multi-scale Porous Materials Center, Chongqing University, Chongqing, 401331, China.
  • Li J; School of Chemistry and Chemical Engineering, State Key Laboratory of Coal Mine Disaster Dynamics and Control, Institute of Advanced Interdisciplinary Studies, Multi-scale Porous Materials Center, Chongqing University, Chongqing, 401331, China.
  • He J; School of Chemistry and Chemical Engineering, State Key Laboratory of Coal Mine Disaster Dynamics and Control, Institute of Advanced Interdisciplinary Studies, Multi-scale Porous Materials Center, Chongqing University, Chongqing, 401331, China.
  • Zheng Y; School of Chemistry and Chemical Engineering, State Key Laboratory of Coal Mine Disaster Dynamics and Control, Institute of Advanced Interdisciplinary Studies, Multi-scale Porous Materials Center, Chongqing University, Chongqing, 401331, China.
  • Yu H; School of Chemistry and Chemical Engineering, State Key Laboratory of Coal Mine Disaster Dynamics and Control, Institute of Advanced Interdisciplinary Studies, Multi-scale Porous Materials Center, Chongqing University, Chongqing, 401331, China.
  • Chen C; Advanced Membranes and Porous Materials (AMPM) Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia.
  • Wang J; School of Chemistry and Chemical Engineering, State Key Laboratory of Coal Mine Disaster Dynamics and Control, Institute of Advanced Interdisciplinary Studies, Multi-scale Porous Materials Center, Chongqing University, Chongqing, 401331, China.
Small ; 20(29): e2309821, 2024 Jul.
Article en En | MEDLINE | ID: mdl-38366125
ABSTRACT
Hydrodeoxygenation (HDO) of lignin derivatives at room-temperature (RT) is still of challenge due to the lack of satisfactory activity reported in previous literature. Here, it is successfully designed a Pd/UiO-66-(COOH)2 catalyst by using UiO-66-(COOH)2 as the support with uncoordinated carboxyl groups. This catalyst, featuring a moderate Pd loading, exhibited exceptional activity in RT HDO of vanillin (VAN, a typical model lignin derivative) to 2-methoxyl-4-methylpheonol (MMP), and >99% VAN conversion with >99% MMP yield is achieved, which is the first metal-organic framework (MOF)-based catalyst realizing the goal of RT HDO of lignin derivatives, surpassing previous reports in the literature. Detailed investigations reveal a linear relationship between the amount of uncoordinated carboxyl group and MMP yield. These uncoordinated carboxyl groups accelerate the conversion of intermediate such as vanillyl alcohol (VAL), ultimately leading to a higher yield of MMP over Pd/UiO-66-(COOH)2 catalyst. Furthermore, Pd/UiO-66-(COOH)2 catalyst also exhibits exceptional reusability and excellent substrate generality, highlighting its promising potential for further biomass utilization.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Small Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Small Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Alemania