Your browser doesn't support javascript.
loading
Wear resistance and flexural properties of low force SLA- and DLP-printed splint materials in different printing orientations: An in vitro study.
Simeon, Philipp; Unkovskiy, Alexey; Saadat Sarmadi, Bardia; Nicic, Robert; Koch, Petra Julia; Beuer, Florian; Schmidt, Franziska.
Afiliación
  • Simeon P; Charité - Universitätsmedizin Berlin, Center for Oral Health Sciences CC3, Department of Prosthodontics, Geriatric Dentistry and Craniomandibular Disorders, Aßmannshauser Str. 4-6, 14197, Berlin, Germany.
  • Unkovskiy A; Charité - Universitätsmedizin Berlin, Center for Oral Health Sciences CC3, Department of Prosthodontics, Geriatric Dentistry and Craniomandibular Disorders, Aßmannshauser Str. 4-6, 14197, Berlin, Germany; Department of Dental Surgery, Sechenov First Moscow State Medical University, Bolshaya Pirogovs
  • Saadat Sarmadi B; Charité - Universitätsmedizin Berlin, Center for Oral Health Sciences CC3, Department of Prosthodontics, Geriatric Dentistry and Craniomandibular Disorders, Aßmannshauser Str. 4-6, 14197, Berlin, Germany.
  • Nicic R; Charité - Universitätsmedizin Berlin, Center for Oral Health Sciences CC3, Department of Prosthodontics, Geriatric Dentistry and Craniomandibular Disorders, Aßmannshauser Str. 4-6, 14197, Berlin, Germany.
  • Koch PJ; Charité - Universitätsmedizin Berlin, Center for Oral Health Sciences CC3, Department of Orthodontics and Orthofacial Orthopedics, Aßmannshauser Str. 4-6, 14197, Berlin, Germany.
  • Beuer F; Charité - Universitätsmedizin Berlin, Center for Oral Health Sciences CC3, Department of Prosthodontics, Geriatric Dentistry and Craniomandibular Disorders, Aßmannshauser Str. 4-6, 14197, Berlin, Germany.
  • Schmidt F; Charité - Universitätsmedizin Berlin, Center for Oral Health Sciences CC3, Department of Prosthodontics, Geriatric Dentistry and Craniomandibular Disorders, Aßmannshauser Str. 4-6, 14197, Berlin, Germany. Electronic address: franziska.schmidt2@charite.de.
J Mech Behav Biomed Mater ; 152: 106458, 2024 Apr.
Article en En | MEDLINE | ID: mdl-38364445
ABSTRACT

OBJECTIVES:

To investigate the influence of material and printing orientation on wear resistance and flexural properties of one low force SLA- and two DLP-printed splint materials and to compare these 3D-printed splints to a subtractively manufactured splint material.

METHODS:

Two DLP-printed (V-Print splint, LuxaPrint Ortho Plus) and one low force SLA-printed (Dental LT Clear) material, where specimens were printed in three printing orientations (0°, 45°, 90°), were investigated. In addition, one milled splint material (Zirlux Splint Transparent) was examined. A total of 160 specimens were produced for both test series. The two-body wear test was performed in a chewing simulator (80'000 cycles at 50 N with 5-55 °C thermocycling). Steatite balls were used as antagonists. The wear pattern was analyzed with a 3D digital microscope in terms of maximum vertical intrusion depth (mm) and total volume loss (mm³). The flexural properties were investigated by three-point bending in accordance with ISO 20795-1 2013 (denture base polymers). The flexural strength (MPa) and the flexural modulus (MPa) were measured. Two-way ANOVA was performed to investigate the effects of the two independent variables material and printing orientation for the three 3D-printed materials. The comparison of the printing orientations within one material was carried out with one-way ANOVA with post-hoc Tukey tests.

RESULTS:

Two-way ANOVA revealed that wear and flexural properties are highly dependent on the 3D-printed material (p < 0.001). Across groups, a significant effect was observed for wear depth (p = 0.031) and wear volume (p = 0.044) with regard to printing orientation but this was not found for flexural strength (p = 0.080) and flexural modulus (p = 0.136). One-way ANOVA showed that both DLP-printed groups showed no significant differences within the printing orientations in terms of wear and flexural properties. Dental LT Clear showed that 90° oriented specimens had higher flexural strength than 0° oriented ones (p < 0.001) and 45° oriented specimens also showed higher values than 0° ones (p = 0.038). No significant differences were observed within the printing orientations for flexural modulus and wear behaviour within this group. T-tests showed that the milled splints exhibited statistically higher wear resistance and flexural properties compared to all three 3D-printed splint materials (p < 0.001) and that highly significant differences were found between the 3D-printed splint materials for both test series.

CONCLUSION:

Within the limitations of this in vitro study, it can be stated that wear behaviour and flexural properties are highly dependent on the 3D-printed material itself. Currently, milled splints exhibit higher wear resistance and flexural properties compared to 3D-printed splint materials. The printing orientation has a minor influence on the properties investigated. Nevertheless, two-way ANOVA also showed a significant influence of printing orientation in the wear test across groups and one-way ANOVA detected significant effects for SLA material in terms of flexural strength, with printing in 90° showing the highest flexural strength. Therefore, anisotropy was found in SLA material, but it can be limited with the employed printing parameters. Both DLP-printed materials showed no significant difference within the printing orientation.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Gastrópodos / Resistencia Flexional Límite: Animals Idioma: En Revista: J Mech Behav Biomed Mater Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article País de afiliación: Alemania Pais de publicación: Países Bajos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Gastrópodos / Resistencia Flexional Límite: Animals Idioma: En Revista: J Mech Behav Biomed Mater Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article País de afiliación: Alemania Pais de publicación: Países Bajos