Your browser doesn't support javascript.
loading
A self-assembling split Nano luciferase-based assay for investigating Pseudomonas syringae effector secretion.
Miao, Pei; Zhou, Jian-Min; Wang, Wei.
Afiliación
  • Miao P; State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
  • Zhou JM; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
  • Wang W; Yazhouwan National Laboratory, Sanya, 572024, China.
Stress Biol ; 4(1): 14, 2024 Feb 16.
Article en En | MEDLINE | ID: mdl-38363371
ABSTRACT
Many Gram-negative pathogens employ the type III secretion system (T3SS) to deliver effector proteins into host cells, thereby modulating host cellular processes and suppressing host immunity to facilitate pathogenesis and colonization. In this study, we developed a straightforward, rapid, and quantitative method for detecting T3SS-mediated translocation of Pseudomonas syringae effectors using a self-assembling split Nano luciferase (Nluc)-based reporter system. It was demonstrated that this system can detect effector secretion in vitro with an exceptionally high signal-to-noise ratio and sensitivity, attributed to the strong affinity between the split domains of Nluc and the intense luminescence generated by functional Nluc. During natural infections, effectors fused to a small C-terminal fragment of Nluc were successfully translocated into plant cells and retained their virulence functions. Furthermore, upon infection of plants expressing the N-terminal fragment of Nluc with these P. syringae strains, functional Nluc proteins were spontaneously assembled and produced bright luminescence, demonstrating that this system enables the straightforward and rapid assessment of P. syringae T3SS-mediated effector translocation during natural infections. In conclusion, the self-assembling split Nluc-based reporting system developed in this study is suitable for efficient in vitro and in planta detection of effectors secreted via T3SS.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Stress Biol Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Stress Biol Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Suiza