Your browser doesn't support javascript.
loading
Multicenter Evaluation of a Weakly Supervised Deep Learning Model for Lymph Node Diagnosis in Rectal Cancer at MRI.
Xia, Wei; Li, Dandan; He, Wenguang; Pickhardt, Perry J; Jian, Junming; Zhang, Rui; Zhang, Junjie; Song, Ruirui; Tong, Tong; Yang, Xiaotang; Gao, Xin; Cui, Yanfen.
Afiliación
  • Xia W; From the Department of Medical Imaging, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China (W.X., J.J., R.Z., X.G.); Department of Radiology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical S
  • Li D; From the Department of Medical Imaging, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China (W.X., J.J., R.Z., X.G.); Department of Radiology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical S
  • He W; From the Department of Medical Imaging, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China (W.X., J.J., R.Z., X.G.); Department of Radiology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical S
  • Pickhardt PJ; From the Department of Medical Imaging, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China (W.X., J.J., R.Z., X.G.); Department of Radiology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical S
  • Jian J; From the Department of Medical Imaging, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China (W.X., J.J., R.Z., X.G.); Department of Radiology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical S
  • Zhang R; From the Department of Medical Imaging, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China (W.X., J.J., R.Z., X.G.); Department of Radiology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical S
  • Zhang J; From the Department of Medical Imaging, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China (W.X., J.J., R.Z., X.G.); Department of Radiology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical S
  • Song R; From the Department of Medical Imaging, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China (W.X., J.J., R.Z., X.G.); Department of Radiology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical S
  • Tong T; From the Department of Medical Imaging, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China (W.X., J.J., R.Z., X.G.); Department of Radiology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical S
  • Yang X; From the Department of Medical Imaging, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China (W.X., J.J., R.Z., X.G.); Department of Radiology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical S
  • Gao X; From the Department of Medical Imaging, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China (W.X., J.J., R.Z., X.G.); Department of Radiology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical S
  • Cui Y; From the Department of Medical Imaging, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China (W.X., J.J., R.Z., X.G.); Department of Radiology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical S
Radiol Artif Intell ; 6(2): e230152, 2024 Mar.
Article en En | MEDLINE | ID: mdl-38353633
ABSTRACT
Purpose To develop a Weakly supervISed model DevelOpment fraMework (WISDOM) model to construct a lymph node (LN) diagnosis model for patients with rectal cancer (RC) that uses preoperative MRI data coupled with postoperative patient-level pathologic information. Materials and Methods In this retrospective study, the WISDOM model was built using MRI (T2-weighted and diffusion-weighted imaging) and patient-level pathologic information (the number of postoperatively confirmed metastatic LNs and resected LNs) based on the data of patients with RC between January 2016 and November 2017. The incremental value of the model in assisting radiologists was investigated. The performances in binary and ternary N staging were evaluated using area under the receiver operating characteristic curve (AUC) and the concordance index (C index), respectively. Results A total of 1014 patients (median age, 62 years; IQR, 54-68 years; 590 male) were analyzed, including the training cohort (n = 589) and internal test cohort (n = 146) from center 1 and two external test cohorts (cohort 1 117; cohort 2 162) from centers 2 and 3. The WISDOM model yielded an overall AUC of 0.81 and C index of 0.765, significantly outperforming junior radiologists (AUC = 0.69, P < .001; C index = 0.689, P < .001) and performing comparably with senior radiologists (AUC = 0.79, P = .21; C index = 0.788, P = .22). Moreover, the model significantly improved the performance of junior radiologists (AUC = 0.80, P < .001; C index = 0.798, P < .001) and senior radiologists (AUC = 0.88, P < .001; C index = 0.869, P < .001). Conclusion This study demonstrates the potential of WISDOM as a useful LN diagnosis method using routine rectal MRI data. The improved radiologist performance observed with model assistance highlights the potential clinical utility of WISDOM in practice. Keywords MR Imaging, Abdomen/GI, Rectum, Computer Applications-Detection/Diagnosis Supplemental material is available for this article. Published under a CC BY 4.0 license.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Neoplasias del Recto / Aprendizaje Profundo Tipo de estudio: Diagnostic_studies / Observational_studies Límite: Humans / Male / Middle aged Idioma: En Revista: Radiol Artif Intell Año: 2024 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Neoplasias del Recto / Aprendizaje Profundo Tipo de estudio: Diagnostic_studies / Observational_studies Límite: Humans / Male / Middle aged Idioma: En Revista: Radiol Artif Intell Año: 2024 Tipo del documento: Article Pais de publicación: Estados Unidos