Your browser doesn't support javascript.
loading
Resolving Multi-Asperity Contacts at the Nanoscale through Super-Resolution Fluorescence Imaging.
Demirkurt, Begüm; Petrova, Dina; Sharma, Dharmendar Kumar; Vacha, Martin; Weber, Bart; Bonn, Daniel; Brouwer, Albert M.
Afiliación
  • Demirkurt B; van't Hoff Institute for Molecular Sciences, University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands.
  • Petrova D; van't Hoff Institute for Molecular Sciences, University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands.
  • Sharma DK; Tokyo Institute of Technology, Ookayama 2-12-1-S8, Meguro-ku, Tokyo 152-8552, Japan.
  • Vacha M; Tokyo Institute of Technology, Ookayama 2-12-1-S8, Meguro-ku, Tokyo 152-8552, Japan.
  • Weber B; Advanced Research Center for Nanolithography (ARCNL), Science Park 106, 1098 XG Amsterdam, The Netherlands.
  • Bonn D; Institute of Physics, University of Amsterdam, P.O. Box 94485, 1090 GL Amsterdam, The Netherlands.
  • Brouwer AM; Institute of Physics, University of Amsterdam, P.O. Box 94485, 1090 GL Amsterdam, The Netherlands.
J Phys Chem Lett ; 15(7): 1936-1942, 2024 Feb 22.
Article en En | MEDLINE | ID: mdl-38346098
ABSTRACT
Contact mechanics, spanning nanometer to tectonic scales, faces long-standing challenges arising from multiscale random roughness, which hinders experimental validation of theories. Understanding multi-asperity rough contacts is vital for addressing catastrophic consequences of these contacts failing such as earthquakes and for diverse technological applications. To visualize such contacts, we introduce a super-resolution microscopy method utilizing spontaneous millisecond ON/OFF fluorescence blinking of contact-sensitive molecular rotor molecules immobilized on a glass coverslip. This technique achieves ∼55 nm lateral imaging resolution for rough poly(methyl methacrylate) and glass spheres on glass contacts. For soft polymer spheres due to large plastic deformation, the resolution improvement does not significantly affect the area of real contact. However, for hard glass spheres, the real contact area is found to be 2.4 times smaller than that found by diffraction-limited imaging. This study highlights, through direct visualization, the impact of material stiffness on the nanoscale structure within the area of real contact.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Phys Chem Lett Año: 2024 Tipo del documento: Article País de afiliación: Países Bajos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Phys Chem Lett Año: 2024 Tipo del documento: Article País de afiliación: Países Bajos Pais de publicación: Estados Unidos