Your browser doesn't support javascript.
loading
Filopodial protrusion driven by density-dependent Ena-TOCA-1 interactions.
Blake, Thomas C A; Fox, Helen M; Urbancic, Vasja; Ravishankar, Roshan; Wolowczyk, Adam; Allgeyer, Edward S; Mason, Julia; Danuser, Gaudenz; Gallop, Jennifer L.
Afiliación
  • Blake TCA; Wellcome/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK.
  • Fox HM; Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK.
  • Urbancic V; Wellcome/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK.
  • Ravishankar R; Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK.
  • Wolowczyk A; Wellcome/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK.
  • Allgeyer ES; Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK.
  • Mason J; Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX 75390, USA.
  • Danuser G; Wellcome/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK.
  • Gallop JL; Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK.
J Cell Sci ; 137(6)2024 03 15.
Article en En | MEDLINE | ID: mdl-38323924
ABSTRACT
Filopodia are narrow actin-rich protrusions with important roles in neuronal development where membrane-binding adaptor proteins, such as I-BAR- and F-BAR-domain-containing proteins, have emerged as upstream regulators that link membrane interactions to actin regulators such as formins and proteins of the Ena/VASP family. Both the adaptors and their binding partners are part of diverse and redundant protein networks that can functionally compensate for each other. To explore the significance of the F-BAR domain-containing neuronal membrane adaptor TOCA-1 (also known as FNBP1L) in filopodia we performed a quantitative analysis of TOCA-1 and filopodial dynamics in Xenopus retinal ganglion cells, where Ena/VASP proteins have a native role in filopodial extension. Increasing the density of TOCA-1 enhances Ena/VASP protein binding in vitro, and an accumulation of TOCA-1, as well as its coincidence with Ena, correlates with filopodial protrusion in vivo. Two-colour single-molecule localisation microscopy of TOCA-1 and Ena supports their nanoscale association. TOCA-1 clusters promote filopodial protrusion and this depends on a functional TOCA-1 SH3 domain and activation of Cdc42, which we perturbed using the small-molecule inhibitor CASIN. We propose that TOCA-1 clusters act independently of membrane curvature to recruit and promote Ena activity for filopodial protrusion.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Seudópodos / Actinas Idioma: En Revista: J Cell Sci Año: 2024 Tipo del documento: Article País de afiliación: Reino Unido Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Seudópodos / Actinas Idioma: En Revista: J Cell Sci Año: 2024 Tipo del documento: Article País de afiliación: Reino Unido Pais de publicación: Reino Unido