Your browser doesn't support javascript.
loading
Enzyme Catalysis Causes Fluid Flow, Motility, and Directional Transport on Supported Lipid Bilayers.
Sapre, Aditya; Mandal, Niladri Sekhar; Somasundar, Ambika; Bhide, Ashlesha; Song, Jiaqi; Borhan, Ali; Sen, Ayusman.
Afiliación
  • Sapre A; Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.
  • Mandal NS; Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.
  • Somasundar A; Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.
  • Bhide A; Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.
  • Song J; Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.
  • Borhan A; Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.
  • Sen A; Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.
ACS Appl Mater Interfaces ; 16(7): 9380-9387, 2024 Feb 21.
Article en En | MEDLINE | ID: mdl-38319873
ABSTRACT
The dynamic interplay between the composition of lipid membranes and the behavior of membrane-bound enzymes is critical to the understanding of cellular function and viability, and the design of membrane-based biosensing platforms. While there is a significant body of knowledge about how lipid composition and dynamics affect membrane-bound enzymes, little is known about how enzyme catalysis influences the motility and lateral transport on lipid membranes. Using enzyme-attached lipids in supported bilayers (SLBs), we provide direct evidence of catalysis-induced fluid flow that underlies the observed motility on SLBs. Additionally, by using active enzyme patches, we demonstrate the directional transport of tracer particles on SLBs. As expected, enhancing the membrane viscosity by incorporating cholesterol into the bilayer suppresses the overall movement. These are the first steps in understanding diffusion and transport on lipid membranes due to active, out-of-equilibrium processes that are the hallmark of living systems. In general, our study demonstrates how active enzymes can be used to control diffusion and transport in confined 2-D environments.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Membrana Dobles de Lípidos Tipo de estudio: Etiology_studies Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Membrana Dobles de Lípidos Tipo de estudio: Etiology_studies Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos