Your browser doesn't support javascript.
loading
Targeted learning in observational studies with multi-valued treatments: An evaluation of antipsychotic drug treatment safety.
Poulos, Jason; Horvitz-Lennon, Marcela; Zelevinsky, Katya; Cristea-Platon, Tudor; Huijskens, Thomas; Tyagi, Pooja; Yan, Jiaju; Diaz, Jordi; Normand, Sharon-Lise.
Afiliación
  • Poulos J; Department of Health Care Policy, Harvard Medical School, Boston, Massachusetts, USA.
  • Horvitz-Lennon M; RAND Corporation, Boston, Massachusetts, USA.
  • Zelevinsky K; Department of Health Care Policy, Harvard Medical School, Boston, Massachusetts, USA.
  • Cristea-Platon T; QuantumBlack, London, UK.
  • Huijskens T; QuantumBlack, London, UK.
  • Tyagi P; QuantumBlack, London, UK.
  • Yan J; QuantumBlack, London, UK.
  • Diaz J; QuantumBlack, London, UK.
  • Normand SL; Department of Health Care Policy, Harvard Medical School, Boston, Massachusetts, USA.
Stat Med ; 43(8): 1489-1508, 2024 Apr 15.
Article en En | MEDLINE | ID: mdl-38314950
ABSTRACT
We investigate estimation of causal effects of multiple competing (multi-valued) treatments in the absence of randomization. Our work is motivated by an intention-to-treat study of the relative cardiometabolic risk of assignment to one of six commonly prescribed antipsychotic drugs in a cohort of nearly 39 000 adults with serious mental illnesses. Doubly-robust estimators, such as targeted minimum loss-based estimation (TMLE), require correct specification of either the treatment model or outcome model to ensure consistent estimation; however, common TMLE implementations estimate treatment probabilities using multiple binomial regressions rather than multinomial regression. We implement a TMLE estimator that uses multinomial treatment assignment and ensemble machine learning to estimate average treatment effects. Our multinomial implementation improves coverage, but does not necessarily reduce bias, relative to the binomial implementation in simulation experiments with varying treatment propensity overlap and event rates. Evaluating the causal effects of the antipsychotics on 3-year diabetes risk or death, we find a safety benefit of moving from a second-generation drug considered among the safest of the second-generation drugs to an infrequently prescribed first-generation drug known for having low cardiometabolic risk.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Antipsicóticos / Enfermedades Cardiovasculares Tipo de estudio: Clinical_trials / Observational_studies Límite: Adult / Humans Idioma: En Revista: Stat Med Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Antipsicóticos / Enfermedades Cardiovasculares Tipo de estudio: Clinical_trials / Observational_studies Límite: Adult / Humans Idioma: En Revista: Stat Med Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido