Your browser doesn't support javascript.
loading
Ferro/Nonferroelectric Vertical Heterostructure Superlattice as a Visible-Light-Responsive Photocatalyst: A DFT Prediction.
Liu, Jian-An; Yin, Lichang; Liu, Gang.
Afiliación
  • Liu JA; Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China.
  • Yin L; School of Materials Science and Engineering, University of Science and Technology of China, 72 Wenhua Road, Shenyang 110016, China.
  • Liu G; Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China.
ACS Appl Mater Interfaces ; 16(6): 7026-7037, 2024 Feb 14.
Article en En | MEDLINE | ID: mdl-38306579
ABSTRACT
Developing narrow-band-gap ferroelectric semiconducting photocatalysts is a promising strategy for efficient photocatalytic water splitting with high energy conversion efficiency. Within this context, six ferro/nonferroelectric vertical heterostructure superlattices (VHSs) are constructed in this work by stacking ferroelectric SiS or GeS with nonferroelectric layered organic photocatalysts (C2N, g-C3N4, and melon), layer by layer. The geometry and electronic structures of these six VHSs are systematically investigated by density functional theory calculations. Consequently, four VHSs (SiS/g-C3N4, GeS/C2N, GeS/g-C3N4, and GeS/melon) are predicted to simultaneously possess several important and highly desirable features for photocatalytic water splitting, namely excellent visible-light adsorption, remarkable spontaneous polarization (0.49-0.70 C/m2), spatial charge separation, as well as suitable band-edge positions, thus serving as potential candidates for photocatalytic water splitting to produce hydrogen. This work not only provides a new strategy to use narrow-band-gap ferroelectric semiconductors for photocatalytic water splitting but also offers inspiration for developing photocatalysts with high energy conversion efficiency.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos