Your browser doesn't support javascript.
loading
CCL-DTI: contributing the contrastive loss in drug-target interaction prediction.
Dehghan, Alireza; Abbasi, Karim; Razzaghi, Parvin; Banadkuki, Hossein; Gharaghani, Sajjad.
Afiliación
  • Dehghan A; Department of Bioinformatics, Kish International Campus, University of Tehran, Kish, 1417614411, Iran.
  • Abbasi K; Laboratory of System Biology, Bioinformatics and Artificial Intelligence in Medicine (LBB&AI), Faculty of Mathematics and Computer Science, Kharazmi University, Tehran, 1417614411, Iran.
  • Razzaghi P; Department of Computer Science and Information Technology, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 4513766731, Iran. p.razzaghi@iasbs.ac.ir.
  • Banadkuki H; Laboratory of Bioinformatics and Drug Design (LBD), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, 1417614411, Iran.
  • Gharaghani S; Laboratory of Bioinformatics and Drug Design (LBD), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, 1417614411, Iran. s.gharaghani@ut.ac.ir.
BMC Bioinformatics ; 25(1): 48, 2024 Jan 30.
Article en En | MEDLINE | ID: mdl-38291364
ABSTRACT

BACKGROUND:

The Drug-Target Interaction (DTI) prediction uses a drug molecule and a protein sequence as inputs to predict the binding affinity value. In recent years, deep learning-based models have gotten more attention. These methods have two modules the feature extraction module and the task prediction module. In most deep learning-based approaches, a simple task prediction loss (i.e., categorical cross entropy for the classification task and mean squared error for the regression task) is used to learn the model. In machine learning, contrastive-based loss functions are developed to learn more discriminative feature space. In a deep learning-based model, extracting more discriminative feature space leads to performance improvement for the task prediction module.

RESULTS:

In this paper, we have used multimodal knowledge as input and proposed an attention-based fusion technique to combine this knowledge. Also, we investigate how utilizing contrastive loss function along the task prediction loss could help the approach to learn a more powerful model. Four contrastive loss functions are considered (1) max-margin contrastive loss function, (2) triplet loss function, (3) Multi-class N-pair Loss Objective, and (4) NT-Xent loss function. The proposed model is evaluated using four well-known datasets Wang et al. dataset, Luo's dataset, Davis, and KIBA datasets.

CONCLUSIONS:

Accordingly, after reviewing the state-of-the-art methods, we developed a multimodal feature extraction network by combining protein sequences and drug molecules, along with protein-protein interaction networks and drug-drug interaction networks. The results show it performs significantly better than the comparable state-of-the-art approaches.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Conocimiento / Aprendizaje Automático Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: BMC Bioinformatics Asunto de la revista: INFORMATICA MEDICA Año: 2024 Tipo del documento: Article País de afiliación: Irán Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Conocimiento / Aprendizaje Automático Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: BMC Bioinformatics Asunto de la revista: INFORMATICA MEDICA Año: 2024 Tipo del documento: Article País de afiliación: Irán Pais de publicación: Reino Unido