Your browser doesn't support javascript.
loading
Relationship between Aspartame-Induced Cerebral Cortex Injury and Oxidative Stress, Inflammation, Mitochondrial Dysfunction, and Apoptosis in Sprague Dawley Rats.
U-Pathi, Jureeporn; Yeh, Yen-Chia; Chen, Chia-Wen; Owaga, Eddy E; Hsieh, Rong-Hong.
Afiliación
  • U-Pathi J; School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan.
  • Yeh YC; School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan.
  • Chen CW; Research Center of Nutritional Medicine, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan.
  • Owaga EE; Institute of Food Bioresources Technology, Dedan Kimathi University of Technology, Nyeri P.O. Box 657-10100, Kenya.
  • Hsieh RH; School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan.
Antioxidants (Basel) ; 13(1)2023 Dec 19.
Article en En | MEDLINE | ID: mdl-38275622
ABSTRACT
There are emerging concerns about the potential cerebral cortex injury from aspartame due to the accumulation of the various neurotoxic metabolic components in the central nervous system after long-term dietary exposure. The aim of this study was to evaluate the effect of oral aspartame consumption on cerebral cortex injury in the rat brain, and further evaluate the various underlying molecular mechanisms, with a special focus on oxidative stress, inflammation, mitochondrial dysfunction, and apoptosis pathways. Sprague Dawley rats (nineteen, female) were randomly sub-divided into three groups (i) normal diet with vehicle control group (five rats), (ii) low dose of aspartame group (LA) seven rats received 30 mg/kg body weight (bw) daily doses of aspartame, (iii) high dose of aspartame group (HA) seven rats received 60 mg/kg bw daily doses of aspartame. After 8 weeks, the LA and HA groups showed lower expression levels of brain-derived neurotrophic factor (BDNF), antioxidant enzyme activity (SOD2, CAT), antioxidant marker (Nrf2), inflammatory response (IκB), mitochondrial biogenesis (Sirt1, PGC1α, Nrf1, TFAM), mitochondrial DNA (mtDNA) copy number, and apoptosis-related proteins (Bax, Caspase-3) expressions. Aspartame administration also elevated oxidative stress levels (Malondialdehyde, MDA), 8-hydroxy-2-deoxy guanosine (8-OHdG), PGE2 and COX-2 expressions, pro-inflammatory cytokines (TNFα, IL6, IL1ß), antioxidant marker expression (Keap1), inflammatory responses (iNOS, NFκB), and glial fibrillary acidic protein (GFAP) levels in the cerebral cortex of the rats, thereby contributing to the reduced survival of pyramidal cells and astrocyte glial cells of the cerebral cortex. Therefore, these findings imply that aspartame-induced neurotoxicity in rats' cerebral cortex could be regulated through four mechanisms inflammation, enhanced oxidant stress, decreased mitochondrial biogenesis, and apoptosis pathways.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Antioxidants (Basel) Año: 2023 Tipo del documento: Article País de afiliación: Taiwán Pais de publicación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Antioxidants (Basel) Año: 2023 Tipo del documento: Article País de afiliación: Taiwán Pais de publicación: Suiza