Your browser doesn't support javascript.
loading
Radiomics Boosts Deep Learning Model for IPMN Classification.
Yao, Lanhong; Zhang, Zheyuan; Demir, Ugur; Keles, Elif; Vendrami, Camila; Agarunov, Emil; Bolan, Candice; Schoots, Ivo; Bruno, Marc; Keswani, Rajesh; Miller, Frank; Gonda, Tamas; Yazici, Cemal; Tirkes, Temel; Wallace, Michael; Spampinato, Concetto; Bagci, Ulas.
Afiliación
  • Yao L; Department of Radiology, Northwestern University, Chicago IL 60611, USA.
  • Zhang Z; Department of Radiology, Northwestern University, Chicago IL 60611, USA.
  • Demir U; Department of Radiology, Northwestern University, Chicago IL 60611, USA.
  • Keles E; Department of Radiology, Northwestern University, Chicago IL 60611, USA.
  • Vendrami C; Department of Radiology, Northwestern University, Chicago IL 60611, USA.
  • Agarunov E; NYU Langone Health, New York, NY 10016.
  • Bolan C; Mayo Clinic, Rochester, MN 55905.
  • Schoots I; Erasmus Medical Center, 3015 GD Rotterdam, Netherlands.
  • Bruno M; Erasmus Medical Center, 3015 GD Rotterdam, Netherlands.
  • Keswani R; Department of Radiology, Northwestern University, Chicago IL 60611, USA.
  • Miller F; Department of Radiology, Northwestern University, Chicago IL 60611, USA.
  • Gonda T; NYU Langone Health, New York, NY 10016.
  • Yazici C; University of Illinois Chicago, Chicago, IL 60607.
  • Tirkes T; Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202.
  • Wallace M; Sheikh Shakhbout Medical City, 11001, Abu Dhabi, United Arab Emirates.
  • Spampinato C; University of Catania, 95124 Catania CT, Italy.
  • Bagci U; Department of Radiology, Northwestern University, Chicago IL 60611, USA.
Mach Learn Med Imaging ; 14349: 134-143, 2023 Oct.
Article en En | MEDLINE | ID: mdl-38274402
ABSTRACT
Intraductal Papillary Mucinous Neoplasm (IPMN) cysts are pre-malignant pancreas lesions, and they can progress into pancreatic cancer. Therefore, detecting and stratifying their risk level is of ultimate importance for effective treatment planning and disease control. However, this is a highly challenging task because of the diverse and irregular shape, texture, and size of the IPMN cysts as well as the pancreas. In this study, we propose a novel computer-aided diagnosis pipeline for IPMN risk classification from multi-contrast MRI scans. Our proposed analysis framework includes an efficient volumetric self-adapting segmentation strategy for pancreas delineation, followed by a newly designed deep learning-based classification scheme with a radiomics-based predictive approach. We test our proposed decision-fusion model in multi-center data sets of 246 multi-contrast MRI scans and obtain superior performance to the state of the art (SOTA) in this field. Our ablation studies demonstrate the significance of both radiomics and deep learning modules for achieving the new SOTA performance compared to international guidelines and published studies (81.9% vs 61.3% in accuracy). Our findings have important implications for clinical decision-making. In a series of rigorous experiments on multi-center data sets (246 MRI scans from five centers), we achieved unprecedented performance (81.9% accuracy). The code is available upon publication.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Clinical_trials / Guideline / Prognostic_studies Idioma: En Revista: Mach Learn Med Imaging Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Clinical_trials / Guideline / Prognostic_studies Idioma: En Revista: Mach Learn Med Imaging Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Alemania