Machine-Learning Based Risk Assessment for Cancer Therapy-Related Cardiac Adverse Events Among Breast Cancer Patients.
Stud Health Technol Inform
; 310: 1006-1010, 2024 Jan 25.
Article
en En
| MEDLINE
| ID: mdl-38269966
ABSTRACT
The study aims to develop machine-learning models to predict cardiac adverse events in female breast cancer patients who receive adjuvant therapy. We selected breast cancer patients from a retrospective dataset of the Taipei Medical University Clinical Research Database and Taiwan Cancer Registry between January 2004 and December 2020. Patients were monitored at the date of prescribed chemo- and/or -target therapies until cardiac adverse events occurred during a year. Variables were used, including demographics, comorbidities, medications, and lab values. Logistics regression (LR) and artificial neural network (ANN) were used. The performance of the algorithms was measured by the area under the receiver operating characteristic curve (AUC). In total, 1321 patients (an equal 15039 visits) were included. The best performance of the artificial neural network (ANN) model was achieved with the AUC, precision, recall, and F1-score of 0.89, 0.14, 0.82, and 0.2, respectively. The most important features were a pre-existing cardiac disease, tumor size, estrogen receptor (ER), human epidermal growth factor receptor 2 (HER2), cancer stage, and age at index date. Further research is necessary to determine the feasibility of applying the algorithm in the clinical setting and explore whether this tool could improve care and outcomes.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Neoplasias de la Mama
Tipo de estudio:
Etiology_studies
/
Observational_studies
/
Prognostic_studies
/
Risk_factors_studies
Límite:
Female
/
Humans
Idioma:
En
Revista:
Stud Health Technol Inform
Asunto de la revista:
INFORMATICA MEDICA
/
PESQUISA EM SERVICOS DE SAUDE
Año:
2024
Tipo del documento:
Article
País de afiliación:
Taiwán
Pais de publicación:
Países Bajos