Your browser doesn't support javascript.
loading
Advanced Electrolyte Formula for Robust Operation of Vanadium Redox Flow Batteries at Elevated Temperatures.
Nguyen, Tam D; Whitehead, Adam; Wai, Nyunt; Scherer, Günther G; Simonov, Alexandr N; Xu, Zhichuan J; MacFarlane, Douglas R.
Afiliación
  • Nguyen TD; School of Material Science and Engineering, Nanyang Technological University, Singapore, 637141, Singapore.
  • Whitehead A; Energy Research Institute @ Nanyang Technological University, Singapore, 637141, Singapore.
  • Wai N; School of Chemistry, Monash University, Melbourne, Victoria, 3800, Australia.
  • Scherer GG; Invinity Energy Systems (UK) Ltd, Bathgate, West Lothian, Scotland, EH48 2FG, UK.
  • Simonov AN; Energy Research Institute @ Nanyang Technological University, Singapore, 637141, Singapore.
  • Xu ZJ; Paul Scherrer Institut PSI, Hägglingen, 5607, Switzerland.
  • MacFarlane DR; School of Chemistry, Monash University, Melbourne, Victoria, 3800, Australia.
Small ; 20(27): e2311771, 2024 Jul.
Article en En | MEDLINE | ID: mdl-38268308
ABSTRACT
Insufficient thermal stability of vanadium redox flow battery (VRFB) electrolytes at elevated temperatures (>40 °C) remains a challenge in the development and commercialization of this technology, which otherwise presents a broad range of technological advantages for the long-term storage of intermittent renewable energy. Herein, a new concept of combined additives is presented, which significantly increases thermal stability of the battery, enabling safe operation to the highest temperature (50 °C) tested to date. This is achieved by combining two chemically distinct additives-inorganic ammonium phosphate and polyvinylpyrrolidone (PVP) surfactant, which collectively decelerate both protonation and agglomeration of the oxo-vanadium species in solution and thereby significantly suppress detrimental formation of precipitates. Specifically, the precipitation rate is reduced by nearly 75% under static conditions at 50° C. This improvement is reflected in the robust operation of a complete VRFB device for over 300 h of continuous operation at 50 °C, achieving an impressive 83% voltage efficiency at 100 mA cm‒2 current density, with no precipitation detected in either the electrode/flow-frame or electrolyte tank.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Small Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article País de afiliación: Singapur Pais de publicación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Small Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article País de afiliación: Singapur Pais de publicación: Alemania