Your browser doesn't support javascript.
loading
Hybrid Organosulfur Network/MWCNT Composite Cathodes for Li-S Batteries.
Choudhury, Soumyadip; Akef, Mohamed; Seifert, Andreas; Göbel, Michael; Gruschwitz, Markus; Matsidik, Rukiya; Tegenkamp, Christoph; Sommer, Michael.
Afiliación
  • Choudhury S; Rubber Technology Centre, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
  • Akef M; Institut für Chemie, Technische Universität Chemnitz, Strasse der Nationen 62, Chemnitz 09111, Germany.
  • Seifert A; Institut für Chemie, Technische Universität Chemnitz, Strasse der Nationen 62, Chemnitz 09111, Germany.
  • Göbel M; Institut für Chemie, Technische Universität Chemnitz, Strasse der Nationen 62, Chemnitz 09111, Germany.
  • Gruschwitz M; Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, Dresden 01069, Germany.
  • Matsidik R; Institut für Physik, Technische Universität Chemnitz, Reichenhainer Str. 70, Chemnitz 09126, Germany.
  • Tegenkamp C; Institut für Chemie, Technische Universität Chemnitz, Strasse der Nationen 62, Chemnitz 09111, Germany.
  • Sommer M; Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, Chemnitz 09126, Germany.
ACS Appl Mater Interfaces ; 16(5): 6301-6314, 2024 Feb 07.
Article en En | MEDLINE | ID: mdl-38265883
ABSTRACT
Lithium-sulfur (Li-S) batteries hold a promising position as candidates for next-generation high-energy storage systems. Here, we combine inverse vulcanization of sulfur with multiwalled carbon nanotubes (MWCNTs) to increase the conductivity of cathode materials for Li-S batteries. The mixing process of inversely vulcanized sulfur copolymer networks with MWCNTs is aided by shear in a two-roll mill to take advantage of the soft nature of the copolymer. The high-throughput mixing method demands a source of conductive carbon that can be intimately mixed with the S copolymer, rendering MWCNTs an excellent choice for this purpose. The resulting sulfur copolymer network-MWCNTs composites were thoroughly characterized in terms of structure, chemical composition, thermal, and electronic transport properties, and finally evaluated by electrochemical benchmarking. These promising hybrids yielded electrodes with high sulfur content and demonstrate stable electrochemical performance exhibiting a specific capacity of ca. 550 mAh·gsulfur-1 (380 mAh·gelectrode-1) even after 500 charge-discharge cycles at specific current of 167 mA·g-1 (corresponds to 0.1C discharge rate), and thus are superior to melt-infiltrated reference samples.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article País de afiliación: India Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article País de afiliación: India Pais de publicación: Estados Unidos