Two-pore potassium channel TREK-1 (K2P2.1) regulates NLRP3 inflammasome activity in macrophages.
Am J Physiol Lung Cell Mol Physiol
; 326(3): L367-L376, 2024 Mar 01.
Article
en En
| MEDLINE
| ID: mdl-38252657
ABSTRACT
Because of the importance of potassium efflux in inflammasome activation, we investigated the role of the two-pore potassium (K2P) channel TREK-1 in macrophage inflammasome activity. Using primary alveolar macrophages (AMs) and bone marrow-derived macrophages (BMDMs) from wild-type (wt) and TREK-1-/- mice, we measured responses to inflammasome priming [using lipopolysaccharide (LPS)] and activation (LPS + ATP). We measured IL-1ß, caspase-1, and NLRP3 via ELISA and Western blot. A membrane-permeable potassium indicator was used to measure potassium efflux during ATP exposure, and a fluorescence-based assay was used to assess changes in membrane potential. Inflammasome activation induced by LPS + ATP increased IL-1ß secretion in wt AMs, whereas activation was significantly reduced in TREK-1-/- AMs. Priming of BMDMs using LPS was not affected by either genetic deficiency or pharmacological inhibition of TREK-1 with Spadin. Cleavage of caspase-1 following LPS + ATP treatment was significantly reduced in TREK-1-/- BMDMs. The intracellular potassium concentration in LPS-primed wt BMDMs was significantly lower compared with TREK-1-/- BMDMs or wt BMDMs treated with Spadin. Conversely, activation of TREK-1 with BL1249 caused a decrease in intracellular potassium in wt BMDMs. Treatment of LPS-primed BMDMs with ATP caused a rapid reduction in intracellular potassium levels, with the largest change observed in TREK-1-/- BMDMs. Intracellular K+ changes were associated with changes in the plasma membrane potential (Em), as evidenced by a more depolarized Em in TREK-1-/- BMDMs compared with wt, and Em hyperpolarization upon TREK-1 channel opening with BL1249. These results suggest that TREK-1 is an important regulator of NLRP3 inflammasome activation in macrophages.NEW & NOTEWORTHY Because of the importance of potassium efflux in inflammasome activation, we investigated the role of the two-pore potassium (K2P) channel TREK-1 in macrophage inflammasome activity. Using primary alveolar macrophages and bone marrow-derived macrophages from wild-type and TREK-1-/- mice, we measured responses to inflammasome priming (using LPS) and activation (LPS + ATP). Our results suggest that TREK-1 is an important regulator of NLRP3 inflammasome activation in macrophages.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Tetrahidronaftalenos
/
Tetrazoles
/
Canales de Potasio de Dominio Poro en Tándem
/
Inflamasomas
Límite:
Animals
Idioma:
En
Revista:
Am J Physiol Lung Cell Mol Physiol
Asunto de la revista:
BIOLOGIA MOLECULAR
/
FISIOLOGIA
Año:
2024
Tipo del documento:
Article
País de afiliación:
Estados Unidos
Pais de publicación:
Estados Unidos