Your browser doesn't support javascript.
loading
Spatial and Temporal Hierarchy for Autonomous Navigation Using Active Inference in Minigrid Environment.
de Tinguy, Daria; Van de Maele, Toon; Verbelen, Tim; Dhoedt, Bart.
Afiliación
  • de Tinguy D; IMEC, Ghent University, 9000 Gent, Belgium.
  • Van de Maele T; VERSES AI Research Lab, Los Angeles, CA 90016, USA.
  • Verbelen T; VERSES AI Research Lab, Los Angeles, CA 90016, USA.
  • Dhoedt B; IMEC, Ghent University, 9000 Gent, Belgium.
Entropy (Basel) ; 26(1)2024 Jan 18.
Article en En | MEDLINE | ID: mdl-38248208
ABSTRACT
Robust evidence suggests that humans explore their environment using a combination of topological landmarks and coarse-grained path integration. This approach relies on identifiable environmental features (topological landmarks) in tandem with estimations of distance and direction (coarse-grained path integration) to construct cognitive maps of the surroundings. This cognitive map is believed to exhibit a hierarchical structure, allowing efficient planning when solving complex navigation tasks. Inspired by human behaviour, this paper presents a scalable hierarchical active inference model for autonomous navigation, exploration, and goal-oriented behaviour. The model uses visual observation and motion perception to combine curiosity-driven exploration with goal-oriented behaviour. Motion is planned using different levels of reasoning, i.e., from context to place to motion. This allows for efficient navigation in new spaces and rapid progress toward a target. By incorporating these human navigational strategies and their hierarchical representation of the environment, this model proposes a new solution for autonomous navigation and exploration. The approach is validated through simulations in a mini-grid environment.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Entropy (Basel) Año: 2024 Tipo del documento: Article País de afiliación: Bélgica Pais de publicación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Entropy (Basel) Año: 2024 Tipo del documento: Article País de afiliación: Bélgica Pais de publicación: Suiza