Your browser doesn't support javascript.
loading
CYB561 promotes HER2+ breast cancer proliferation by inhibiting H2AFY degradation.
Zhao, Ting; Wang, Chaomin; Zhao, Na; Qiao, Ge; Hua, Jialei; Meng, Donghua; Liu, Liming; Zhong, Benfu; Liu, Miao; Wang, Yichao; Bai, Changsen; Li, Yueguo.
Afiliación
  • Zhao T; Department of Clinical Laboratory, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, National
  • Wang C; Department of Clinical Laboratory, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, National
  • Zhao N; Department of Clinical Laboratory, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, National
  • Qiao G; Department of Pathology, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, National Key Labor
  • Hua J; Department of Clinical Laboratory, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, National
  • Meng D; Department of Radiology, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, National Key Labor
  • Liu L; Department of Public Laboratory, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, National K
  • Zhong B; Department of Pediatric Oncology, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, National
  • Liu M; Department of Radiotherapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, National Key La
  • Wang Y; Department of Clinical Laboratory Medicine, The First People's Hospital of Xianyang, Xianyang, China. wangyichaobei@126.com.
  • Bai C; Department of Clinical Laboratory, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, National
  • Li Y; Department of Clinical Laboratory, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, National
Cell Death Discov ; 10(1): 38, 2024 Jan 20.
Article en En | MEDLINE | ID: mdl-38245506
ABSTRACT
Breast cancer (BRCA) has a high incidence and mortality rate among women. Different molecular subtypes of breast cancer have different prognoses and require personalized therapies. It is imperative to find novel therapeutic targets for different molecular subtypes of BRCA. Here, we demonstrated for the first time that Cytochromeb561 (CYB561) is highly expressed in BRCA and correlates with poor prognosis, especially in HER2-positive BRCA. Overexpression of CYB561 could upregulate macroH2A (H2AFY) expression in HER2-positive BRCA cells through inhibition of H2AFY ubiquitination, and high expression of CYB561 in HER2-positive BRCA cells could promote the proliferation and migration of cells. Furthermore, we have demonstrated that CYB561 regulates H2AFY expression, thereby influencing the expression of NF-κB, a downstream molecule of H2AFY. These findings have been validated through in vivo experiments. In conclusion, we propose that CYB561 may represent a novel therapeutic target for the treatment of HER2-positive BRCA. Graphical abstract CYB561 promotes the proliferation of HER2+ BRCA cells CYB561 enhances the expression of H2AFY by inhibiting its ubiquitination, which leads to an increase expression of NF-κB in the nucleus. H2AFY, together with NF-κB, promotes the proliferation of HER2+ BRCA cells.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Cell Death Discov Año: 2024 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Cell Death Discov Año: 2024 Tipo del documento: Article Pais de publicación: Estados Unidos