Your browser doesn't support javascript.
loading
Rapid three-dimensional quantification of high-intensity plaques from coronary atherosclerosis T1-weighted characterization to predict periprocedural myocardial injury.
Nakazawa, Motoki; Matsumoto, Hidenari; Li, Debiao; Slomka, Piotr J; Dey, Damini; Cadet, Sebastien; Isodono, Koji; Irie, Daisuke; Higuchi, Satoshi; Tanisawa, Hiroki; Ohya, Hidefumi; Kitamura, Ryoji; Komori, Yoshiaki; Hondera, Tetsuichi; Sato, Ikumi; Lee, Hsu-Lei; Christodoulou, Anthony G; Xie, Yibin; Shinke, Toshiro.
Afiliación
  • Nakazawa M; Division of Cardiology, Showa University School of Medicine, Tokyo, Japan.
  • Matsumoto H; Division of Cardiology, Showa University School of Medicine, Tokyo, Japan.
  • Li D; Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
  • Slomka PJ; Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
  • Dey D; Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
  • Cadet S; Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
  • Isodono K; Department of Cardiology, Ijinkai Takeda General Hospital, Kyoto, Japan.
  • Irie D; Department of Cardiology, Ijinkai Takeda General Hospital, Kyoto, Japan.
  • Higuchi S; Division of Cardiology, Showa University School of Medicine, Tokyo, Japan.
  • Tanisawa H; Division of Cardiology, Showa University School of Medicine, Tokyo, Japan.
  • Ohya H; Department of Cardiology, Ijinkai Takeda General Hospital, Kyoto, Japan.
  • Kitamura R; Department of Cardiology, Ijinkai Takeda General Hospital, Kyoto, Japan.
  • Komori Y; MR Research & Collaboration Department, Siemens Healthcare K.K., Tokyo, Japan.
  • Hondera T; Department of Radiological Technology, Showa University Hospital, Japan.
  • Sato I; Department of Radiological Technology, Ijinkai Takeda General Hospital, Kyoto, Japan.
  • Lee HL; Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
  • Christodoulou AG; Department of Radiological Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
  • Xie Y; Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
  • Shinke T; Division of Cardiology, Showa University School of Medicine, Tokyo, Japan.
J Cardiovasc Magn Reson ; 26(1): 100999, 2024.
Article en En | MEDLINE | ID: mdl-38237903
ABSTRACT

BACKGROUND:

High-intensity plaque (HIP) on magnetic resonance imaging (MRI) has been documented as a powerful predictor of periprocedural myocardial injury (PMI) following percutaneous coronary intervention (PCI). Despite the recent proposal of three-dimensional HIP quantification to enhance the predictive capability, the conventional pulse sequence, which necessitates the separate acquisition of anatomical reference images, hinders accurate three-dimensional segmentation along the coronary vasculature. Coronary atherosclerosis T1-weighted characterization (CATCH) enables the simultaneous acquisition of inherently coregistered dark-blood plaque and bright-blood coronary artery images. We aimed to develop a novel HIP quantification approach using CATCH and to ascertain its superior predictive performance compared to the conventional two-dimensional assessment based on plaque-to-myocardium signal intensity ratio (PMR).

METHODS:

In this prospective study, CATCH MRI was conducted before elective stent implantation in 137 lesions from 125 patients. On CATCH images, dedicated software automatically generated tubular three-dimensional volumes of interest on the dark-blood plaque images along the coronary vasculature, based on the precisely matched bright-blood coronary artery images, and subsequently computed PMR and HIP volume (HIPvol). Specifically, HIPvol was calculated as the volume of voxels with signal intensity exceeding that of the myocardium, weighted by their respective signal intensities. PMI was defined as post-PCI cardiac troponin-T > 5 × the upper reference limit.

RESULTS:

The entire analysis process was completed within 3 min per lesion. PMI occurred in 44 lesions. Based on the receiver operating characteristic curve analysis, HIPvol outperformed PMR for predicting PMI (C-statistics, 0.870 [95% CI, 0.805-0.936] vs. 0.787 [95% CI, 0.706-0.868]; p = 0.001). This result was primarily driven by the higher sensitivity HIPvol offered 0.886 (95% CI, 0.754-0.962) vs. 0.750 for PMR (95% CI, 0.597-0.868; p = 0.034). Multivariable analysis identified HIPvol as an independent predictor of PMI (odds ratio, 1.15 per 10-µL increase; 95% CI, 1.01-1.30, p = 0.035).

CONCLUSIONS:

Our semi-automated method of analyzing coronary plaque using CATCH MRI provided rapid HIP quantification. Three-dimensional assessment using this approach had a better ability to predict PMI than conventional two-dimensional assessment.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Enfermedad de la Arteria Coronaria / Interpretación de Imagen Asistida por Computador / Valor Predictivo de las Pruebas / Vasos Coronarios / Imagenología Tridimensional / Placa Aterosclerótica / Intervención Coronaria Percutánea Tipo de estudio: Observational_studies / Prognostic_studies / Risk_factors_studies Límite: Aged / Female / Humans / Male / Middle aged Idioma: En Revista: J Cardiovasc Magn Reson Asunto de la revista: ANGIOLOGIA / CARDIOLOGIA / DIAGNOSTICO POR IMAGEM Año: 2024 Tipo del documento: Article País de afiliación: Japón Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Enfermedad de la Arteria Coronaria / Interpretación de Imagen Asistida por Computador / Valor Predictivo de las Pruebas / Vasos Coronarios / Imagenología Tridimensional / Placa Aterosclerótica / Intervención Coronaria Percutánea Tipo de estudio: Observational_studies / Prognostic_studies / Risk_factors_studies Límite: Aged / Female / Humans / Male / Middle aged Idioma: En Revista: J Cardiovasc Magn Reson Asunto de la revista: ANGIOLOGIA / CARDIOLOGIA / DIAGNOSTICO POR IMAGEM Año: 2024 Tipo del documento: Article País de afiliación: Japón Pais de publicación: Reino Unido