Your browser doesn't support javascript.
loading
64Cu production via the 68Zn(p,nα)64Cu nuclear reaction: An untapped, cost-effective and high energy production route.
Nelson, Bryce J B; Leier, Samantha; Wilson, John; Wuest, Melinda; Doupe, Jonathan; Andersson, Jan D; Wuest, Frank.
Afiliación
  • Nelson BJB; Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta T6G 1Z2, Canada.
  • Leier S; Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta T6G 1Z2, Canada.
  • Wilson J; Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta T6G 1Z2, Canada.
  • Wuest M; Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta T6G 1Z2, Canada; Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, Alberta T6G 2E1, Canada.
  • Doupe J; Edmonton Radiopharmaceutical Center, Alberta Health Services, Edmonton, Alberta T6G 1Z2, Canada.
  • Andersson JD; Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta T6G 1Z2, Canada; Edmonton Radiopharmaceutical Center, Alberta Health Services, Edmonton, Alberta T6G 1Z2, Canada.
  • Wuest F; Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta T6G 1Z2, Canada; Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, Alberta T6G 2E1, Canada. Electronic address: wuest@ualberta.ca.
Nucl Med Biol ; 128-129: 108875, 2024.
Article en En | MEDLINE | ID: mdl-38199184
ABSTRACT

INTRODUCTION:

Copper-64 (64Cu, t1/2 = 12.7 h) is a positron emitter well suited for theranostic applications with beta-emitting 67Cu for targeted molecular imaging and radionuclide therapy. The present work aims to evaluate the radionuclidic purity and radiochemistry of 64Cu produced via the 68Zn(p,nα)64Cu nuclear reaction. Macrocyclic chelators DOTA, NOTA, TETA, and prostate-specific membrane antigen ligand PSMA I&T were radiolabeled with purified 64Cu and tested for in vitro stability. [64Cu]Cu-PSMA I&T was used to demonstrate in vivo PET imaging using 64Cu synthesized via the 68Zn(p,nα)64Cu production route and its suitability as a theranostic imaging partner alongside 67Cu therapy.

METHODS:

64Cu was produced on a 24 MeV TR-24 cyclotron at a beam energy of 23.5 MeV and currents up to 70 µA using 200 mg 68Zn encapsulated within an aluminum­indium-graphite sealed solid target assembly. 64Cu semi-automated purification was performed using a NEPTIS Mosaic-LC synthesis unit employing CU, TBP, and TK201 (TrisKem) resins. Radionuclidic purity was measured by HPGe gamma spectroscopy, while ICP-OES assessed elemental purity. Radiolabeling was performed with NOTA at room temperature and DOTA, TETA, and PSMA I&T at 95 °C. 64Cu incorporation was studied by radio-TLC. 64Cu in vitro stability of [64Cu]Cu-NOTA, [64Cu]Cu-DOTA, [64Cu]Cu-TETA, and [64Cu]Cu-PSMA I&T was assessed at 37 °C from 0 to 72 h in human blood serum. Preclinical PET imaging was performed at 1, 24, and 48 h post-injection with [64Cu]Cu-PSMA I&T in LNCaP tumor-bearing mice and compared with [68Ga]Ga-PSMA I&T.

RESULTS:

Maximum purified activity of 4.9 GBq [64Cu]CuCl2 was obtained in 5 mL of pH 2-3 solution, with 2.9 GBq 64Cu concentrated in 0.5 mL. HPGe gamma spectroscopy of purified 64Cu detected <0.3 % co-produced 67Cu at EOB with no other radionuclidic impurities. ICP-OES elemental analysis determined <1 ppm Al, Zn, In, Fe, and Cu in the [64Cu]CuCl2 product. NOTA, DOTA, TETA, and PSMA I&T were radiolabeled with 64Cu, resulting in maximum molar activities of 164 ± 6 GBq/µmol, 155 ± 31 GBq/µmol, 266 ± 34 GBq/µmol, and 117 ± 2 GBq/µmol, respectively. PET imaging in PSMA-expressing LNCaP xenografts resulted in high tumor uptake (SUVmean = 1.65 ± 0.1) using [64Cu]Cu-PSMA I&T, while [68Ga]Ga-PSMA I&T yielded an SUVmean of 0.76 ± 0.14 after 60 min post-injection.

CONCLUSIONS:

64Cu was purified in a small volume amenable for radiolabeling, with yields suitable for preclinical and clinical application. The 64Cu production and purification process and the favourable PET imaging properties confirm the 68Zn(p,nα)64Cu nuclear reaction as a viable 64Cu production route for facilities with access to a higher energy proton cyclotron, compared to using expensive 64Ni target material and the 64Ni(p,n)64Cu nuclear reaction. ADVANCES IN KNOWLEDGE AND IMPLICATIONS FOR PATIENT CARE Our 64Cu production technique provides an alternative production route with the potential to improve 64Cu availability for preclinical and clinical studies alongside 67Cu therapy.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Urea / Radioisótopos de Galio / Neoplasias Tipo de estudio: Health_economic_evaluation Límite: Animals / Humans / Male Idioma: En Revista: Nucl Med Biol Asunto de la revista: BIOLOGIA / MEDICINA NUCLEAR Año: 2024 Tipo del documento: Article País de afiliación: Canadá Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Urea / Radioisótopos de Galio / Neoplasias Tipo de estudio: Health_economic_evaluation Límite: Animals / Humans / Male Idioma: En Revista: Nucl Med Biol Asunto de la revista: BIOLOGIA / MEDICINA NUCLEAR Año: 2024 Tipo del documento: Article País de afiliación: Canadá Pais de publicación: Estados Unidos