A zebrafish NLRX1 isoform downregulates fish IFN responses by targeting the adaptor STING.
J Virol
; 98(2): e0180123, 2024 Feb 20.
Article
en En
| MEDLINE
| ID: mdl-38193691
ABSTRACT
In mammals, NLRX1 is a unique member of the nucleotide-binding domain and leucine-rich repeat (NLR) family showing an ability to negatively regulate IFN antiviral immunity. Intron-containing genes, including NLRX1, have more than one transcript due to alternative splicing; however, little is known about the function of its splicing variants. Here, we identified a transcript variant of NLRX1 in zebrafish (Danio rerio), termed NLRX1-tv4, as a negative regulator of fish IFN response. Zebrafish NLRX1-tv4 was slightly induced by viral infection, with an expression pattern similar to the full-length NLRX1. Despite the lack of an N-terminal domain that exists in the full-length NLRX1, overexpression of NLRX1-tv4 still impaired fish IFN antiviral response and promoted viral replication in fish cells, similar to the full-length NLRX1. Mechanistically, NLRX1-tv4 targeted STING for proteasome-dependent protein degradation by recruiting an E3 ubiquitin ligase RNF5 to drive the K48-linked ubiquitination, eventually downregulating the IFN antiviral response. Mapping of NLRX1-tv4 domains showed that its N-terminal and C-terminal regions exhibited a similar potential to inhibit STING-mediated IFN antiviral response. Our findings reveal that like the full-length NLRX1, zebrafish NLRX-tv4 functions as an inhibitor to shape fish IFN antiviral response.IMPORTANCEIn this study, we demonstrate that a transcript variant of zebrafish NLRX1, termed NLRX1-tv4, downregulates fish IFN response and promotes virus replication by targeting STING for protein degradation and impairing the interaction of STING and TBK1 and that its N- and C-terminus exhibit a similar inhibitory potential. Our results are helpful in clarifying the current contradictory understanding of structure and function of vertebrate NLRX1s.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Proteínas de Pez Cebra
/
Proteínas Mitocondriales
/
Proteínas de la Membrana
Límite:
Animals
Idioma:
En
Revista:
J Virol
Año:
2024
Tipo del documento:
Article
País de afiliación:
China
Pais de publicación:
Estados Unidos