Your browser doesn't support javascript.
loading
Unveiling moisture transport mechanisms in cellulosic materials: Vapor vs. bound water.
Zou, Yuliang; Maillet, Benjamin; Brochard, Laurent; Coussot, Philippe.
Afiliación
  • Zou Y; Laboratoire Navier, Univ. Gustave Eiffel, ENPC, CNRS, 77420 Champs sur Marne, France.
  • Maillet B; Laboratoire Navier, Univ. Gustave Eiffel, ENPC, CNRS, 77420 Champs sur Marne, France.
  • Brochard L; Laboratoire Navier, Univ. Gustave Eiffel, ENPC, CNRS, 77420 Champs sur Marne, France.
  • Coussot P; Laboratoire Navier, Univ. Gustave Eiffel, ENPC, CNRS, 77420 Champs sur Marne, France.
PNAS Nexus ; 3(1): pgad450, 2024 Jan.
Article en En | MEDLINE | ID: mdl-38187807
ABSTRACT
Natural textiles, hair, paper, wool, or bio-based walls possess the remarkable ability to store humidity from sweat or the environment through "bound water" absorption within nanopores, constituting up to 30% of their dry mass. The knowledge of the induced water transfers is pivotal for advancing industrial processes and sustainable practices in various fields such as wood drying, paper production and use, moisture transfers in clothes or hair, humidity regulation of bio-based construction materials, etc. However, the transport and storage mechanisms of this moisture remain poorly understood, with modeling often relying on an assumption of dominant vapor transport with an unknown diffusion coefficient. Our research addresses this knowledge gap, demonstrating the pivotal role of bound water transport within interconnected fiber networks. Notably, at low porosity, bound water diffusion dominates over vapor diffusion. By isolating diffusion processes and deriving diffusion coefficients through rigorous experimentation, we establish a comprehensive model for moisture transfer. Strikingly, our model accurately predicts the evolution of bound water's spatial distribution for a wide range of sample porosities, as verified through magnetic resonance imaging. Showing that bound water transport can be dominant over vapor transport, this work offers a change of paradigm and unprecedented control over humidity-related processes.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: PNAS Nexus Año: 2024 Tipo del documento: Article País de afiliación: Francia Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: PNAS Nexus Año: 2024 Tipo del documento: Article País de afiliación: Francia Pais de publicación: Reino Unido