Model-based super-resolution reconstruction for pseudo-continuous Arterial Spin Labeling.
Neuroimage
; 286: 120506, 2024 Feb 01.
Article
en En
| MEDLINE
| ID: mdl-38185186
ABSTRACT
Arterial spin labeling (ASL) is a promising, non-invasive perfusion magnetic resonance imaging technique for quantifying cerebral blood flow (CBF). Unfortunately, ASL suffers from an inherently low signal-to-noise ratio (SNR) and spatial resolution, undermining its potential. Increasing spatial resolution without significantly sacrificing SNR or scan time represents a critical challenge towards routine clinical use. In this work, we propose a model-based super-resolution reconstruction (SRR) method with joint motion estimation that breaks the traditional SNR/resolution/scan-time trade-off. From a set of differently oriented 2D multi-slice pseudo-continuous ASL images with a low through-plane resolution, 3D-isotropic, high resolution, quantitative CBF maps are estimated using a Bayesian approach. Experiments on both synthetic whole brain phantom data, and on in vivo brain data, show that the proposed SRR Bayesian estimation framework outperforms state-of-the-art ASL quantification.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Procesamiento de Imagen Asistido por Computador
/
Angiografía por Resonancia Magnética
Tipo de estudio:
Prognostic_studies
Aspecto:
Patient_preference
Límite:
Humans
Idioma:
En
Revista:
Neuroimage
Asunto de la revista:
DIAGNOSTICO POR IMAGEM
Año:
2024
Tipo del documento:
Article
País de afiliación:
Bélgica
Pais de publicación:
Estados Unidos