Recent progress of MXene as an energy storage material.
Nanoscale Horiz
; 9(2): 215-232, 2024 Jan 29.
Article
en En
| MEDLINE
| ID: mdl-38180501
ABSTRACT
Thanks to its adjustable interlayer distance, large specific surface area, abundant active sites, and diverse surface functional groups, MXene has always been regarded as an excellent candidate for energy storage materials, including supercapacitors and ion batteries. Recent studies have also shown that MXene can serve as an efficient hydrogen storage catalyst. This review aims to summarize the latest research achievements in the field of MXene, especially its performance and application in energy storage. Different synthesis techniques have different effects on the energy storage performance of MXene. In this review, various common synthesis methods and the latest innovations in synthesis methods are discussed. MXene is prone to oxidation, and how to resist oxidation is also an important topic in MXene research. This article introduces the research results on improving the chemical stability of MXene through annealing. In addition, it aims to gain a deeper understanding of the future development and potential of MXene.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
Nanoscale Horiz
Año:
2024
Tipo del documento:
Article
Pais de publicación:
Reino Unido