Your browser doesn't support javascript.
loading
Nanoscale Infrared Spectroscopic Characterization of Extended Defects in 4H-Silicon Carbide.
Criswell, Scott G; Mahadik, Nadeemullah A; Gallagher, James C; Barnett, Julian; Kim, Luke; Ghorbani, Morvarid; Kamaliya, Bhaveshkumar; Bassim, Nabil D; Taubner, Thomas; Caldwell, Joshua D.
Afiliación
  • Criswell SG; Department of Electrical Engineering, Vanderbilt University, 2400 Highland Avenue, Nashville, Tennessee 37212, United States.
  • Mahadik NA; Electro-Optic Technology Division, Naval Surface Warfare Center, Crane, Indiana 47522, United States.
  • Gallagher JC; US Naval Research Laboratory, 4555 Overlook Avenue, S.W., Washington, D.C. 20375, United States.
  • Barnett J; US Naval Research Laboratory, 4555 Overlook Avenue, S.W., Washington, D.C. 20375, United States.
  • Kim L; I. Institute of Physics (IA), RWTH Aachen, 52074 Aachen, Germany.
  • Ghorbani M; Department of Mechanical Engineering, Vanderbilt University, 2400 Highland Avenue, Nashville, Tennessee 37212, United States.
  • Kamaliya B; Department of Materials Science and Engineering, McMaster University, Hamilton, Ontario L8S 4L8, Canada.
  • Bassim ND; Department of Materials Science and Engineering, McMaster University, Hamilton, Ontario L8S 4L8, Canada.
  • Taubner T; Canadian Centre for Electron Microscopy, McMaster University, Hamilton, Ontario L8S 4L8, Canada.
  • Caldwell JD; Department of Materials Science and Engineering, McMaster University, Hamilton, Ontario L8S 4L8, Canada.
Nano Lett ; 24(1): 114-121, 2024 Jan 10.
Article en En | MEDLINE | ID: mdl-38164942
ABSTRACT
Extended defects in wide-bandgap semiconductors have been widely investigated using techniques providing either spectroscopic or microscopic information. Nano-Fourier transform infrared spectroscopy (nano-FTIR) is a nondestructive characterization method combining FTIR with nanoscale spatial resolution (∼20 nm) and topographic information. Here, we demonstrate the capability of nano-FTIR for the characterization of extended defects in semiconductors by investigating an in-grown stacking fault (IGSF) present in a 4H-SiC epitaxial layer. We observe a local spectral shift of the mid-infrared near-field response, consistent with the identification of the defect stacking order as 3C-SiC (cubic) from comparative simulations based on the finite dipole model (FDM). This 3C-SiC IGSF contrasts with the more typical 8H-SiC IGSFs reported previously and is exemplary in showing that nanoscale spectroscopy with nano-FTIR can provide new insights into the properties of extended defects, the understanding of which is crucial for mitigating deleterious effects of such defects in alternative semiconductor materials and devices.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nano Lett Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nano Lett Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos