A novel deep learning model for a computed tomography diagnosis of coronary plaque erosion.
Sci Rep
; 13(1): 22992, 2023 12 27.
Article
en En
| MEDLINE
| ID: mdl-38151502
ABSTRACT
Patients with acute coronary syndromes caused by plaque erosion might be managed conservatively without stenting. Currently, the diagnosis of plaque erosion requires an invasive imaging procedure. We sought to develop a deep learning (DL) model that enables an accurate diagnosis of plaque erosion using coronary computed tomography angiography (CTA). A total of 532 CTA scans from 395 patients were used to develop a DL model 426 CTA scans from 316 patients for training and internal validation, and 106 separate scans from 79 patients for validation. Momentum Distillation-enhanced Composite Transformer Attention (MD-CTA), a novel DL model that can effectively process the entire set of CTA scans to diagnose plaque erosion, was developed. The novel DL model, compared to the convolution neural network, showed significantly improved AUC (0.899 [0.841-0.957] vs. 0.724 [0.622-0.826]), sensitivity (87.1 [70.2-96.4] vs. 71.0 [52.0-85.8]), and specificity (85.3 [75.3-92.4] vs. 68.0 [56.2-78.3]), respectively, for the patient-level prediction. Similar results were obtained at the slice-level prediction AUC (0.897 [0.890-0.904] vs. 0.757 [0.744-0.770]), sensitivity (82.2 [79.8-84.3] vs. 68.9 [66.2-71.6]), and specificity (80.1 [79.1-81.0] vs. 67.3 [66.3-68.4]), respectively. This newly developed DL model enables an accurate CT diagnosis of plaque erosion, which might enable cardiologists to provide tailored therapy without invasive procedures.Clinical Trial Registration http//www.clinicaltrials.gov , NCT04523194.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Enfermedad de la Arteria Coronaria
/
Placa Aterosclerótica
/
Aprendizaje Profundo
Límite:
Humans
Idioma:
En
Revista:
Sci Rep
Año:
2023
Tipo del documento:
Article
País de afiliación:
Corea del Sur
Pais de publicación:
Reino Unido