Your browser doesn't support javascript.
loading
Comparative study of high-performance mesophilic and thermophilic anaerobic membrane bioreactors in the co-digestion of sewage sludge and food waste: Methanogenic performance and energy recovery potential.
Cheng, Hui; Qin, Haojie; Li, Yemei; Guo, Guangze; Liu, Jianyong; Li, Yu-You.
Afiliación
  • Cheng H; School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China.
  • Qin H; School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China.
  • Li Y; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan; Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies, Tsukuba 305-8506, Japan.
  • Guo G; Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, 6-6-20 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan.
  • Liu J; School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China.
  • Li YY; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan; Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, 6-6-20 Aoba, Aramaki-
Sci Total Environ ; 912: 169518, 2024 Feb 20.
Article en En | MEDLINE | ID: mdl-38142003
ABSTRACT
To support smart cities in terms of waste management and bioenergy recovery, the co-digestion of sewage sludge (SeS) and food waste (FW) was conducted by the anaerobic membrane bioreactor (AnMBR) under mesophilic and thermophilic conditions in this study. The biogas production rate of the thermophilic AnMBR (ThAnMBR) at the SeS to FW ratio of 0100, 7525, 5050 and 1000 was 2.84 ± 0.21, 2.51 ± 0.26, 1.54 ± 0.26 and 1.31 ± 0.08 L-biogas/L/d, inconspicuous compared with that of the mesophilic AnMBR (MeAnMBR) at 3.00 ± 0.25, 2.46 ± 0.30, 1.63 ± 0.23 and 1.30 ± 0.17 L-biogas/L/d, respectively. The higher hydrolysis ratio and the poorer rejection efficiencies of the membrane under thermophilic conditions, resulting that the permeate COD, carbohydrate and protein of the ThAnMBR was higher than that of the MeAnMBR. The lost COD that might be converted into biogas was discharged with the permeate in the ThAnMBR, which was partly responsible for the inconspicuous methanogenic performance. Furthermore, the results of energy recovery potential assessment showed that the energy return on investment (EROI) of the MeAnMBR was 4.54, 3.81, 2.69 and 2.22 at the four SeS ratios, which was higher than that of the ThAnMBR at 3.29, 2.97, 2.02 and 1.80, respectively, indicating the advantage of the MeAnMBR over the ThAnMBR in energy recovery potential. The outcomes of this study will help to choose a more favorable temperature to co-digest SeS and FW to support the construction of smart cities.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Aguas del Alcantarillado / Eliminación de Residuos Idioma: En Revista: Sci Total Environ Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Países Bajos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Aguas del Alcantarillado / Eliminación de Residuos Idioma: En Revista: Sci Total Environ Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Países Bajos