Your browser doesn't support javascript.
loading
A Novel Aptamer Biosensor Based on a Localized Surface Plasmon Resonance Sensing Chip for High-Sensitivity and Rapid Enrofloxacin Detection.
Wang, Pan; Ding, Liyun; Zhang, Yumei; Jiang, Xingdong.
Afiliación
  • Wang P; National Engineering Research Center of Fiber Optic Sensing Technology and Networks, Wuhan University of Technology, Wuhan 430070, China.
  • Ding L; National Engineering Research Center of Fiber Optic Sensing Technology and Networks, Wuhan University of Technology, Wuhan 430070, China.
  • Zhang Y; School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China.
  • Jiang X; National Engineering Research Center of Fiber Optic Sensing Technology and Networks, Wuhan University of Technology, Wuhan 430070, China.
Biosensors (Basel) ; 13(12)2023 Dec 13.
Article en En | MEDLINE | ID: mdl-38131787
ABSTRACT
Enrofloxacin, a fluoroquinolone widely used in animal husbandry, presents environmental and human health hazards due to its stability and incomplete hydrolysis leading to residue accumulation. To address this concern, a highly sensitive aptamer biosensor utilizing a localized surface plasmon resonance (LSPR) sensing chip and microfluidic technology was developed for rapid enrofloxacin residue detection. AuNPs were prepared by the seed method and the AuNPs-Apt complexes were immobilized on the chip by the sulfhydryl groups modified on the end of the aptamer. The properties and morphologies of the sensing chip and AuNPs-Apt complexes were characterized by Fourier transform infrared spectroscopy (FTIR), UV-Vis spectrophotometer, and scanning electron microscope (SEM), respectively. The sensing chip was able to detect enrofloxacin in the range of 0.01-100 ng/mL with good linearity, and the relationship between the response of the sensing chip and the concentration was Δλ (nm) = 1.288log ConENR (ng/mL) + 5.245 (R2 = 0.99), with the limit of detection being 0.001 ng/mL. The anti-interference, repeatability, and selectivity of this sensing chip were studied in detail. Compared with other sensors, this novel aptamer biosensor based on AuNPs-Apt complexes is expected to achieve simple, stable, and economical application in the field of enrofloxacin detection.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Técnicas Biosensibles / Nanopartículas del Metal Límite: Animals / Humans Idioma: En Revista: Biosensors (Basel) Año: 2023 Tipo del documento: Article País de afiliación: China Pais de publicación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Técnicas Biosensibles / Nanopartículas del Metal Límite: Animals / Humans Idioma: En Revista: Biosensors (Basel) Año: 2023 Tipo del documento: Article País de afiliación: China Pais de publicación: Suiza