Your browser doesn't support javascript.
loading
Fast free energy estimates from λ-dynamics with bias-updated Gibbs sampling.
Robo, Michael T; Hayes, Ryan L; Ding, Xinqiang; Pulawski, Brian; Vilseck, Jonah Z.
Afiliación
  • Robo MT; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
  • Hayes RL; Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
  • Ding X; Indiana Biosciences Research Institute, 1210 Waterway Blvd Ste. 2000, Indianapolis, IN, 46202, USA.
  • Pulawski B; Chemical and Biomolecular Engineering, University of California, Irvine, California, 92617, USA.
  • Vilseck JZ; Pharmaceutical Sciences, University of California, Irvine, CA, 92617, USA.
Nat Commun ; 14(1): 8515, 2023 Dec 21.
Article en En | MEDLINE | ID: mdl-38129400
ABSTRACT
Relative binding free energy calculations have become an integral computational tool for lead optimization in structure-based drug design. Classical alchemical methods, including free energy perturbation or thermodynamic integration, compute relative free energy differences by transforming one molecule into another. However, these methods have high operational costs due to the need to perform many pairwise perturbations independently. To reduce costs and accelerate molecular design workflows, we present a method called λ-dynamics with bias-updated Gibbs sampling. This method uses dynamic biases to continuously sample between multiple ligand analogues collectively within a single simulation. We show that many relative binding free energies can be determined quickly with this approach without compromising accuracy. For five benchmark systems, agreement to experiment is high, with root mean square errors near or below 1.0 kcal mol-1. Free energy results are consistent with other computational approaches and within statistical noise of both methods (0.4 kcal mol-1 or less). Notably, large efficiency gains over thermodynamic integration of 18-66-fold for small perturbations and 100-200-fold for whole aromatic ring substitutions are observed. The rapid determination of relative binding free energies will enable larger chemical spaces to be more readily explored and structure-based drug design to be accelerated.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Diseño de Fármacos / Simulación de Dinámica Molecular Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Diseño de Fármacos / Simulación de Dinámica Molecular Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido