Your browser doesn't support javascript.
loading
Integrating molecular descriptors for enhanced prediction: Shedding light on the potential of pH to model hydrated electron reaction rates for organic compounds.
Li, Yi; Tao, Cuicui; Fu, Dafang; Jafvert, Chad T; Zhu, Tengyi.
Afiliación
  • Li Y; School of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu, China.
  • Tao C; School of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu, China.
  • Fu D; School of Civil Engineering, Southeast University, Nanjing, 210096, China.
  • Jafvert CT; Lyles School of Civil Engineering, and Environmental & Ecological Engineering, Purdue University, West Lafayette, IN, 47907, USA.
  • Zhu T; School of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu, China. Electronic address: tyzhu@yzu.edu.cn.
Chemosphere ; 349: 140984, 2024 Feb.
Article en En | MEDLINE | ID: mdl-38122944
ABSTRACT
Hydrated electron reaction rate constant (ke-aq) is an important parameter to determine reductive degradation efficiency and to mitigate the ecological risk of organic compounds (OCs). However, OC species morphology and the concentration of hydrated electrons (e-aq) in water vary with pH, complicating OC fate assessment. This study introduced the environmental variable of pH, to develop models for ke-aq for 701 data points using 3 descriptor types (i) molecular descriptors (MD), (ii) quantum chemical descriptors (QCD), and (iii) the combination of both (MD + QCD). Models were screened using 2 descriptor screening methods (MLR and RF) and 14 machine learning (ML) algorithms. The introduction of QCDs that characterized the electronic structure of OCs greatly improved the performance of models while ensuring the need for fewer descriptors. The optimal model MLR-XGBoost(MD + QCD), which included pH, achieved the most satisfactory prediction R2tra = 0.988, Q2boot = 0.861, R2test = 0.875 and Q2test = 0.873. The mechanistic interpretation using the SHAP method further revealed that QCDs, polarizability, volume, and pH had a great influence on the reductive degradation of OCs by e-aq. Overall, the electrochemical parameters (QCDs, pH) related to the solvent and solute are of significance and should be considered in any future ML modeling that assesses the fate of OCs in aquatic environment.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Relación Estructura-Actividad Cuantitativa / Electrones Idioma: En Revista: Chemosphere Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Relación Estructura-Actividad Cuantitativa / Electrones Idioma: En Revista: Chemosphere Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Reino Unido