Your browser doesn't support javascript.
loading
Development and validation of a machine learning model using electronic health records to predict trauma- and stressor-related psychiatric disorders after hospitalization with sepsis.
Papini, Santiago; Iturralde, Esti; Lu, Yun; Greene, John D; Barreda, Fernando; Sterling, Stacy A; Liu, Vincent X.
Afiliación
  • Papini S; Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA. spapini@hawaii.edu.
  • Iturralde E; Department of Psychology, University of Hawai'i at Manoa, Honolulu, HI, USA. spapini@hawaii.edu.
  • Lu Y; Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA.
  • Greene JD; Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA.
  • Barreda F; Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA.
  • Sterling SA; Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA.
  • Liu VX; Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA.
Transl Psychiatry ; 13(1): 400, 2023 Dec 18.
Article en En | MEDLINE | ID: mdl-38114475
ABSTRACT
A significant minority of individuals develop trauma- and stressor-related disorders (TSRD) after surviving sepsis, a life-threatening immune response to infections. Accurate prediction of risk for TSRD can facilitate targeted early intervention strategies, but many existing models rely on research measures that are impractical to incorporate to standard emergency department workflows. To increase the feasibility of implementation, we developed models that predict TSRD in the year after survival from sepsis using only electronic health records from the hospitalization (n = 217,122 hospitalizations from 2012-2015). The optimal model was evaluated in a temporally independent prospective test sample (n = 128,783 hospitalizations from 2016-2017), where patients in the highest-risk decile accounted for nearly one-third of TSRD cases. Our approach demonstrates that risk for TSRD after sepsis can be stratified without additional assessment burden on clinicians and patients, which increases the likelihood of model implementation in hospital settings.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Sepsis / Trastornos Mentales Límite: Humans Idioma: En Revista: Transl Psychiatry Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Sepsis / Trastornos Mentales Límite: Humans Idioma: En Revista: Transl Psychiatry Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos