Smoother: a unified and modular framework for incorporating structural dependency in spatial omics data.
Genome Biol
; 24(1): 291, 2023 12 18.
Article
en En
| MEDLINE
| ID: mdl-38110959
ABSTRACT
Spatial omics technologies can help identify spatially organized biological processes, but existing computational approaches often overlook structural dependencies in the data. Here, we introduce Smoother, a unified framework that integrates positional information into non-spatial models via modular priors and losses. In simulated and real datasets, Smoother enables accurate data imputation, cell-type deconvolution, and dimensionality reduction with remarkable efficiency. In colorectal cancer, Smoother-guided deconvolution reveals plasma cell and fibroblast subtype localizations linked to tumor microenvironment restructuring. Additionally, joint modeling of spatial and single-cell human prostate data with Smoother allows for spatial mapping of reference populations with significantly reduced ambiguity.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Próstata
/
Fibroblastos
Límite:
Humans
/
Male
Idioma:
En
Revista:
Genome Biol
Asunto de la revista:
BIOLOGIA MOLECULAR
/
GENETICA
Año:
2023
Tipo del documento:
Article
País de afiliación:
Estados Unidos
Pais de publicación:
Reino Unido