Promising 8-Aminoquinoline-Based Metal Complexes in the Modulation of SIRT1/3-FOXO3a Axis against Oxidative Damage-Induced Preclinical Neurons.
ACS Omega
; 8(49): 46977-46988, 2023 Dec 12.
Article
en En
| MEDLINE
| ID: mdl-38107906
ABSTRACT
The discovery of novel bioactive molecules as potential multifunctional neuroprotective agents has clinically drawn continual interest due to devastating oxidative damage in the pathogenesis and progression of neurodegenerative diseases. Synthetic 8-aminoquinoline antimalarial drug is an attractive pharmacophore in drug development and chemical modification owing to its wide range of biological activities, yet the underlying molecular mechanisms are not fully elucidated in preclinical models for oxidative damage. Herein, the neuroprotective effects of two 8-aminoquinoline-uracil copper complexes were investigated on the hydrogen peroxide-induced human neuroblastoma SH-SY5Y cells. Both metal complexes markedly restored cell survival, alleviated apoptotic cascades, maintained antioxidant defense, and prevented mitochondrial function by upregulating the sirtuin 1 (SIRT1)/3-FOXO3a signaling pathway. Intriguingly, in silico molecular docking and pharmacokinetic prediction suggested that these synthetic compounds acted as SIRT1 activators with potential drug-like properties, wherein the uracil ligands (5-iodoracil and 5-nitrouracil) were essential for effective binding interactions with the target protein SIRT1. Taken together, the synthetic 8-aminoquinoline-based metal complexes are promising brain-targeting drugs for attenuating neurodegenerative diseases.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
ACS Omega
Año:
2023
Tipo del documento:
Article
País de afiliación:
Tailandia
Pais de publicación:
Estados Unidos