Your browser doesn't support javascript.
loading
Enhanced thermoelectric properties of In-filled Co4Sb12 by dispersion of reduced graphene oxide.
Ghosh, Sanyukta; Jain, Shubhanth; Mishra, Soumya Ranjan; Rogl, Gerda; Rogl, Peter; Bauer, Ernst; Murty, B S; Govindaraj, A; Mallik, Ramesh Chandra.
Afiliación
  • Ghosh S; Thermoelectric Materials and Devices Laboratory, Department of Physics, Indian Institute of Science, Bangalore 560012, India. rcmallik@iisc.ac.in.
  • Jain S; Solid state and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India.
  • Mishra SR; Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600036, India.
  • Rogl G; Institute of Materials Chemistry, University of Vienna, A-1090 Wien, Austria.
  • Rogl P; Institute of Materials Chemistry, University of Vienna, A-1090 Wien, Austria.
  • Bauer E; Institute of Solid State Physics, TU-Wien, A-1040 Wien, Austria.
  • Murty BS; Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600036, India.
  • Govindaraj A; Solid state and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India.
  • Mallik RC; Thermoelectric Materials and Devices Laboratory, Department of Physics, Indian Institute of Science, Bangalore 560012, India. rcmallik@iisc.ac.in.
Dalton Trans ; 53(2): 715-723, 2024 Jan 02.
Article en En | MEDLINE | ID: mdl-38086681
Uniform dispersion of nanosized secondary phases in bulk thermoelectric materials has proven to be an effective strategy to reduce the lattice part of thermal conductivity and improve the thermoelectric efficiency. In this work, reduced graphene oxide (rGO) was uniformly dispersed in the In0.5Co4Sb12 bulk material by ultrasonication. The formation of impurity phases of InSb and CoSb2 in the In-filled Co4Sb12 is inevitable, as observed from XRD and EPMA analyses. The Raman spectra of the nanocomposites showed broad peaks suggesting phonon softening and additional peaks corresponding to rGO. Electron transport was not affected by rGO addition, resulting in little change in the electrical resistivity and Seebeck coefficient. The lattice thermal conductivity of the bulk material was significantly reduced by the addition of a small amount of rGO, primarily attributed to the interface scattering of phonons. Hence, the highest zT of ∼1.53 at 773 K was achieved for the In0.5Co4Sb12/0.25 vol% rGO composite in the temperature range from 723 K to 773 K.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Dalton Trans Asunto de la revista: QUIMICA Año: 2024 Tipo del documento: Article País de afiliación: India Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Dalton Trans Asunto de la revista: QUIMICA Año: 2024 Tipo del documento: Article País de afiliación: India Pais de publicación: Reino Unido