Your browser doesn't support javascript.
loading
Cell-type-directed design of synthetic enhancers.
Taskiran, Ibrahim I; Spanier, Katina I; Dickmänken, Hannah; Kempynck, Niklas; Pancíková, Alexandra; Eksi, Eren Can; Hulselmans, Gert; Ismail, Joy N; Theunis, Koen; Vandepoel, Roel; Christiaens, Valerie; Mauduit, David; Aerts, Stein.
Afiliación
  • Taskiran II; Laboratory of Computational Biology, VIB Center for AI & Computational Biology (VIB.AI), Leuven, Belgium.
  • Spanier KI; VIB-KULeuven Center for Brain & Disease Research, Leuven, Belgium.
  • Dickmänken H; Department of Human Genetics, KU Leuven, Leuven, Belgium.
  • Kempynck N; Laboratory of Computational Biology, VIB Center for AI & Computational Biology (VIB.AI), Leuven, Belgium.
  • Pancíková A; VIB-KULeuven Center for Brain & Disease Research, Leuven, Belgium.
  • Eksi EC; Department of Human Genetics, KU Leuven, Leuven, Belgium.
  • Hulselmans G; Laboratory of Computational Biology, VIB Center for AI & Computational Biology (VIB.AI), Leuven, Belgium.
  • Ismail JN; VIB-KULeuven Center for Brain & Disease Research, Leuven, Belgium.
  • Theunis K; Department of Human Genetics, KU Leuven, Leuven, Belgium.
  • Vandepoel R; Laboratory of Computational Biology, VIB Center for AI & Computational Biology (VIB.AI), Leuven, Belgium.
  • Christiaens V; VIB-KULeuven Center for Brain & Disease Research, Leuven, Belgium.
  • Mauduit D; Department of Human Genetics, KU Leuven, Leuven, Belgium.
  • Aerts S; Laboratory of Computational Biology, VIB Center for AI & Computational Biology (VIB.AI), Leuven, Belgium.
Nature ; 626(7997): 212-220, 2024 Feb.
Article en En | MEDLINE | ID: mdl-38086419
Transcriptional enhancers act as docking stations for combinations of transcription factors and thereby regulate spatiotemporal activation of their target genes1. It has been a long-standing goal in the field to decode the regulatory logic of an enhancer and to understand the details of how spatiotemporal gene expression is encoded in an enhancer sequence. Here we show that deep learning models2-6, can be used to efficiently design synthetic, cell-type-specific enhancers, starting from random sequences, and that this optimization process allows detailed tracing of enhancer features at single-nucleotide resolution. We evaluate the function of fully synthetic enhancers to specifically target Kenyon cells or glial cells in the fruit fly brain using transgenic animals. We further exploit enhancer design to create 'dual-code' enhancers that target two cell types and minimal enhancers smaller than 50 base pairs that are fully functional. By examining the state space searches towards local optima, we characterize enhancer codes through the strength, combination and arrangement of transcription factor activator and transcription factor repressor motifs. Finally, we apply the same strategies to successfully design human enhancers, which adhere to enhancer rules similar to those of Drosophila enhancers. Enhancer design guided by deep learning leads to better understanding of how enhancers work and shows that their code can be exploited to manipulate cell states.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Células / Elementos de Facilitación Genéticos / Drosophila melanogaster / Biología Sintética / Aprendizaje Profundo Límite: Animals / Humans Idioma: En Revista: Nature Año: 2024 Tipo del documento: Article País de afiliación: Bélgica Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Células / Elementos de Facilitación Genéticos / Drosophila melanogaster / Biología Sintética / Aprendizaje Profundo Límite: Animals / Humans Idioma: En Revista: Nature Año: 2024 Tipo del documento: Article País de afiliación: Bélgica Pais de publicación: Reino Unido