Your browser doesn't support javascript.
loading
An Adaptative Savitzky-Golay Kernel for Laplacian Estimation in Magnetic Resonance Electrical Property Tomography.
Article en En | MEDLINE | ID: mdl-38083553
Magnetic Resonance electrical property tomography (MR-EPT) is a non-invasive imaging modality that reconstructs the living biological tissue's conductivity σ and εr permittivity using spatial derivatives of the measured RF field, also termed B1 data, in a magnetic resonance imaging system. The spatial derivative operator, particularly the Laplacian, amplifies the noise in the reconstructed electrical property (EP) maps, hence decreasing accuracy and increasing boundary artifacts. We propose a novel adaptative convolution kernel for generating numerical derivatives based on 3D Savitzky-Golay (SG) filters and local segmentation in a magnitude image. In comparison to typical SG kernel, the proposed kernel allows arbitrary shapes and sizes to vary with local tissue. It provides an automatic trade-off between noise and resolution, thereby significantly enhancing reconstruction accuracy and eliminating boundary artifacts.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Imagen por Resonancia Magnética / Tomografía Idioma: En Revista: Annu Int Conf IEEE Eng Med Biol Soc Año: 2023 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Imagen por Resonancia Magnética / Tomografía Idioma: En Revista: Annu Int Conf IEEE Eng Med Biol Soc Año: 2023 Tipo del documento: Article Pais de publicación: Estados Unidos