Your browser doesn't support javascript.
loading
DMSA-coated IONPs trigger oxidative stress, mitochondrial metabolic reprograming and changes in mitochondrial disposition, hindering cell cycle progression of cancer cells.
Daviu, Neus; Portilla, Yadileiny; Gómez de Cedrón, Marta; Ramírez de Molina, Ana; Barber, Domingo F.
Afiliación
  • Daviu N; Department of Immunology and Oncology and Nanobiomedicine Initiative, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049, Madrid, Spain.
  • Portilla Y; Department of Immunology and Oncology and Nanobiomedicine Initiative, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049, Madrid, Spain.
  • Gómez de Cedrón M; Molecular Oncology Group, IMDEA Food Institute, CEI UAM-CSIC, Crta. De Canto Blanco 8, 28049, Madrid, Spain.
  • Ramírez de Molina A; Molecular Oncology Group, IMDEA Food Institute, CEI UAM-CSIC, Crta. De Canto Blanco 8, 28049, Madrid, Spain.
  • Barber DF; Department of Immunology and Oncology and Nanobiomedicine Initiative, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049, Madrid, Spain. Electronic address: dfbarber@cnb.csic.es.
Biomaterials ; 304: 122409, 2024 01.
Article en En | MEDLINE | ID: mdl-38052135
There is increasing interest in modulating the redox homeostasis of tumors since high levels of reactive oxygen species (ROS) make them more vulnerable to changes in these species. Nanomedicine offers promise in this context as such applications may provoke biological responses that induce ROS production. Indeed, iron oxide nanoparticles (IONPs) can induce ROS accumulation through the so-called Fenton reaction of iron, further augmenting the ROS in tumors and overloading the antioxidant system beyond its capacity, thereby driving oxidative stress to a level that is incompatible with cell survival. Here, three different coatings for IONPs were compared to assess their intrinsic capacity to induce ROS production in cells. Of these coatings, dimercaptosuccinic acid-coated IONPs (DMSA-NPs) provoked the strongest ROS production, which was associated with the ability to reprogram the metabolism of cancer cells. This latter phenomenon involved shutting-down oxidative phosphorylation (OXPHOS), shifting mitochondrial morphology towards a more elongated phenotype, reducing the total mitochondrial mass and ultimately, blocking cell proliferation by inducing G0/G1 cell cycle arrest. Consequently, the data obtained highlights the importance of studying the chemical properties of IONPs, presenting DMSA-NPs as a novel tool to induce oxidative stress in cancer cells and alter their cell fate.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Compuestos Férricos / Neoplasias Límite: Humans Idioma: En Revista: Biomaterials Año: 2024 Tipo del documento: Article País de afiliación: España Pais de publicación: Países Bajos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Compuestos Férricos / Neoplasias Límite: Humans Idioma: En Revista: Biomaterials Año: 2024 Tipo del documento: Article País de afiliación: España Pais de publicación: Países Bajos