Your browser doesn't support javascript.
loading
Nanotubular Fe2O3 and Mn3O4 with hierarchical porosity as high-performance anode materials for lithium-ion batteries.
Li, Zhen; Yang, Man; Geng, Fengting; Zhang, Dashuai; Zhang, Yongzheng; Zhang, Xiuling; Pang, Xuliang; Geng, Longlong.
Afiliación
  • Li Z; Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, P. R. China. lizhendiyi@163.com.
  • Yang M; Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, P. R. China. lizhendiyi@163.com.
  • Geng F; School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, P. R. China.
  • Zhang D; Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, P. R. China. lizhendiyi@163.com.
  • Zhang Y; School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China.
  • Zhang X; Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, P. R. China. lizhendiyi@163.com.
  • Pang X; Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, P. R. China. lizhendiyi@163.com.
  • Geng L; Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, P. R. China. lizhendiyi@163.com.
Dalton Trans ; 52(48): 18194-18205, 2023 Dec 12.
Article en En | MEDLINE | ID: mdl-38009578
Developing eco-friendly and low-cost advanced anode materials, such as Fe2O3 and Mn3O4, is fundamental to improve the electrochemical performance of lithium-ion batteries (LIBs). The rational engineering of the microstructure of Fe2O3 and Mn3O4 to endow it with one-dimensionally and hierarchically porous architecture is a feasible way to further improve and optimize the electrochemical performance of the anode materials. Herein, we demonstrate a facile strategy to prepare nanotubular Fe2O3 and Mn3O4 as advanced anode materials for high-performance LIBs. By combining the merits of the one-dimensionally nanotubular morphology and hierarchically porous structure, limitations in the lithiation activity of Mn3O4 and Fe2O3 anode materials, such as low electrical conductivity, large volume expansion, and sluggish lithium-ion diffusion within the materials, have been effectively overcome. When used as anode materials, t-Fe2O3 and t-Mn3O4 exhibited outstanding electrochemical performances, including a high reversible discharge capacity (859.7 and 901.4 mA h g-1 for t-Fe2O3 and t-Mn3O4, respectively), excellent rate performance, and ultra-stable cycling stability. Such superior electrochemical performances proved the exceptional potential of the materials for the real-world application in LIBs.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Dalton Trans Asunto de la revista: QUIMICA Año: 2023 Tipo del documento: Article Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Dalton Trans Asunto de la revista: QUIMICA Año: 2023 Tipo del documento: Article Pais de publicación: Reino Unido