Your browser doesn't support javascript.
loading
Research Advances in Clinical Applications, Anticancer Mechanism, Total Chemical Synthesis, Semi-Synthesis and Biosynthesis of Paclitaxel.
Zhang, Shengnan; Ye, Taiqiang; Liu, Yibin; Hou, Guige; Wang, Qibao; Zhao, Fenglan; Li, Feng; Meng, Qingguo.
Afiliación
  • Zhang S; Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education), Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai 264005, China.
  • Ye T; Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education), Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai 264005, China.
  • Liu Y; Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education), Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai 264005, China.
  • Hou G; School of Pharmacy, Binzhou Medical University, Yantai 264003, China.
  • Wang Q; School of Biological Science, Jining Medical University, Rizhao 276800, China.
  • Zhao F; Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education), Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai 264005, China.
  • Li F; Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education), Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai 264005, China.
  • Meng Q; Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education), Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai 264005, China.
Molecules ; 28(22)2023 Nov 10.
Article en En | MEDLINE | ID: mdl-38005238
Paclitaxel, a natural secondary metabolite isolated and purified from the bark of the Taxus tree, is considered one of the most successful natural anticancer drugs due to its low toxicity, high potency and broad-spectrum anticancer activity. Taxus trees are scarce and slow-growing, and with extremely low paclitaxel content, the contradiction between supply and demand in the market is becoming more and more intense. Therefore, researchers have tried to obtain paclitaxel by various methods such as chemical synthesis, artificial culture, microbial fermentation and tissue cell culture to meet the clinical demand for this drug. This paper provides a comprehensive overview of paclitaxel extraction, combination therapy, total synthesis, semi-synthesis and biosynthesis in recent years and provides an outlook, aiming to provide a theoretical basis and reference for further research on the production and application of paclitaxel in the future.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Paclitaxel / Taxus Idioma: En Revista: Molecules Asunto de la revista: BIOLOGIA Año: 2023 Tipo del documento: Article País de afiliación: China Pais de publicación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Paclitaxel / Taxus Idioma: En Revista: Molecules Asunto de la revista: BIOLOGIA Año: 2023 Tipo del documento: Article País de afiliación: China Pais de publicación: Suiza