Your browser doesn't support javascript.
loading
Anti-hypertensive and composition as well as pharmacokinetics and tissues distribution of active ingredients from Alpinia zerumbet.
Xiao, Ting; Wu, Ai; Wang, Xiaowei; Guo, Zhenghong; Huang, Feilong; Cheng, Xingyan; Shen, Xiangchun; Tao, Ling.
Afiliación
  • Xiao T; The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, NO. 6 Ankang avenue, Guian New District, 561113, Guizhou, China; The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medic
  • Wu A; The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, NO. 6 Ankang avenue, Guian New District, 561113, Guizhou, China; The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medic
  • Wang X; The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, NO. 6 Ankang avenue, Guian New District, 561113, Guizhou, China; The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medic
  • Guo Z; School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, Guizhou, China.
  • Huang F; The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, NO. 6 Ankang avenue, Guian New District, 561113, Guizhou, China; The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medic
  • Cheng X; The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, NO. 6 Ankang avenue, Guian New District, 561113, Guizhou, China; The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medic
  • Shen X; The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, NO. 6 Ankang avenue, Guian New District, 561113, Guizhou, China; The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medic
  • Tao L; The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, NO. 6 Ankang avenue, Guian New District, 561113, Guizhou, China; The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medic
Fitoterapia ; 172: 105753, 2024 Jan.
Article en En | MEDLINE | ID: mdl-37992780
Alpinia zerumbet is a food flavor additive and a traditional medicine herb around the world. Several studies have reported that A. zerumbet has excellent effects on a variety of cardiovascular diseases, but its potential hypertensive applications, and pharmacokinetic features of main active substances have not been fully investigated. The mechanism of anti-hypertension with ethyl acetate extracts of A. zerumbet fruits (AZEAE) was evaluated by L-NNA-induced hypertensive rats and L-NAME-injured human umbilical vein endothelial cells (HUVECs). Blood pressure, echocardiographic cardiac index and H&E staining were used to preliminary evaluate the antihypertensive effect of AZEAE, the levels of TNF-α, IL-6, and IL-1ß were evaluated by ELISA, and the proteins expression of IL-1ß, IL-18, AGTR1, VCAM, iNOS, EDN1 and eNOS were also evaluated. In addition, isolation, identification, and activity screening of bioactive compounds were carried ou. Next, pharmacokinetics and tissues distribution of dihydro-5,6-dehydrokavain (DDK) in vivo were measured, and preliminary absorption mechanism was conducted with Caco-2 cell monolayers. AZEAE remarkably enhanced the state of hypertensive rats. Twelve compounds were isolated and identified, and five compounds were isolated from this plant for the first time. The isolated compounds also exhibited good resistance against injury of HUVECs. Moreover, pharmacokinetics and Caco-2 cell monolayers demonstrated AZEAE had better absorption capacity than DDK, and DDK exhibited differences in tissues distribution and gender difference. This study was the first to assess the potential hypertensive applications of A. zerumbet in vivo and vitro, and the first direct and concise study of the in vivo behavior of DDK and AZEAE.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Alpinia / Antihipertensivos Límite: Animals / Humans Idioma: En Revista: Fitoterapia Año: 2024 Tipo del documento: Article Pais de publicación: Países Bajos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Alpinia / Antihipertensivos Límite: Animals / Humans Idioma: En Revista: Fitoterapia Año: 2024 Tipo del documento: Article Pais de publicación: Países Bajos