Your browser doesn't support javascript.
loading
An orientation-free ring feature descriptor with stain-variability normalization for pathology image matching.
Li, Xiaoxiao; Long, Mengping; Huang, Jin; Wu, Jianghua; Shen, Hui; Zhou, Fuling; Hou, Jinxuan; Xu, Yu; Wang, Du; Mei, Liye; Liu, Yiqiang; Hu, Taobo; Lei, Cheng.
Afiliación
  • Li X; The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China.
  • Long M; The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China; Department of Pathology, Peking University Cancer Hospital, Beijing 100142, China.
  • Huang J; The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China.
  • Wu J; Department of Pathology, Peking University Cancer Hospital, Beijing 100142, China.
  • Shen H; Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
  • Zhou F; Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
  • Hou J; Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
  • Xu Y; Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
  • Wang D; The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China.
  • Mei L; The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China; School of Computer Science, Hubei University of Technology, Wuhan, 430068, China. Electronic address: liyemei@whu.edu.cn.
  • Liu Y; Department of Pathology, Peking University Cancer Hospital, Beijing 100142, China.
  • Hu T; The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China; Department of Breast Surgery, Peking University People's Hospital, Beijing, 100044, China.
  • Lei C; The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China; Suzhou Institute of Wuhan University, Suzhou, 215000, China; Shenzhen Institute of Wuhan University, Shenzhen, 518057, China. Electronic address: leicheng@whu.edu.cn.
Comput Biol Med ; 167: 107675, 2023 12.
Article en En | MEDLINE | ID: mdl-37976825
Comprehensively analyzing the corresponding regions in the images of serial slices stained using different methods is a common but important operation in pathological diagnosis. To help increase the efficiency of the analysis, various image registration methods are proposed to match the corresponding regions in different images, but their performance is highly influenced by the rotations, deformations, and variations of staining between the serial pathology images. In this work, we propose an orientation-free ring feature descriptor with stain-variability normalization for pathology image matching. Specifically, we normalize image staining to similar levels to minimize the impact of staining differences on pathology image matching. To overcome the rotation and deformation issues, we propose a rotation-invariance orientation-free ring feature descriptor that generates novel adaptive bins from ring features to build feature vectors. We measure the Euclidean distance of the feature vectors to evaluate keypoint similarity to achieve pathology image matching. A total of 46 pairs of clinical pathology images in hematoxylin-eosin and immunohistochemistry straining to verify the performance of our method. Experimental results indicate that our method meets the pathology image matching accuracy requirements (error ¡ 300µm), especially competent for large-angle rotation cases common in clinical practice.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Algoritmos / Colorantes Idioma: En Revista: Comput Biol Med Año: 2023 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Algoritmos / Colorantes Idioma: En Revista: Comput Biol Med Año: 2023 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos