Your browser doesn't support javascript.
loading
Fluorinated Artificial Solid-Electrolyte-Interphase Layer for Long-Life Sodium Metal Batteries.
Damircheli, Roya; Hoang, Binh; Castagna Ferrari, Victoria; Lin, Chuan-Fu.
Afiliación
  • Damircheli R; Department of Mechanical Engineering, Catholic University of America, Washington, District of Columbia 20064, United States.
  • Hoang B; Department of Mechanical Engineering, Catholic University of America, Washington, District of Columbia 20064, United States.
  • Castagna Ferrari V; Department of Material Science and Engineering, University of Maryland, College Park, Maryland 20742, United States.
  • Lin CF; Department of Mechanical Engineering, Catholic University of America, Washington, District of Columbia 20064, United States.
ACS Appl Mater Interfaces ; 15(47): 54915-54922, 2023 Nov 29.
Article en En | MEDLINE | ID: mdl-37971318
Sodium metal batteries have garnered significant attention due to their high theoretical specific capacity, cost effectiveness, and abundant availability. However, the propensity for dendritic sodium formation, stemming from the highly reactive nature of the sodium metal surface, poses safety concerns, and the uncontrollable formation of the solid-electrolyte interphase (SEI) leads to large cell impedance and battery failures. In this study, we present a novel approach where we have successfully developed a stable fluorinated artificial SEI layer on the sodium metal surface by employing various weight percentages of tin fluoride in a dimethyl carbonate solution, utilizing a convenient, cost-effective, and single-step method. The resulting fluoride-rich protective layer effectively stabilized the Na metal surfaces and significantly enhanced cycling stability. The engineered artificial SEI layer demonstrated an enhanced lifetime of Na metal symmetric cells of over 3.5 times, over 700 h at the current density of 0.25 mA/cm2, in cycling performance compared to the untreated sodium, which is attributed to the suppression of dendrite formation and the reduction of undesired SEI formation during high-current cycling.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos