Your browser doesn't support javascript.
loading
Metabolic engineering of Saccharomyces cerevisiae for second-generation ethanol production from xylo-oligosaccharides and acetate.
Procópio, Dielle Pierotti; Lee, Jae Won; Shin, Jonghyeok; Tramontina, Robson; Ávila, Patrícia Felix; Brenelli, Lívia Beatriz; Squina, Fabio Márcio; Damasio, André; Rabelo, Sarita Cândida; Goldbeck, Rosana; Franco, Telma Teixeira; Leak, David; Jin, Yong-Su; Basso, Thiago Olitta.
Afiliación
  • Procópio DP; Department of Chemical Engineering, Escola Politécnica, Universidade de São Paulo (USP), São Paulo, SP, 05508-010, Brazil.
  • Lee JW; Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo), São Paulo, SP, 05508-900, Brazil.
  • Shin J; DOE Center for Advanced Bioenergy and Bioproducts Innovation (CABER), University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
  • Tramontina R; Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign (UIUC), Urbana, IL, 61801, USA.
  • Ávila PF; DOE Center for Advanced Bioenergy and Bioproducts Innovation (CABER), University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
  • Brenelli LB; Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign (UIUC), Urbana, IL, 61801, USA.
  • Squina FM; Synthetic Biology & Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea.
  • Damasio A; Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, 13083-862, Brazil.
  • Rabelo SC; Environment and Technological Processes Program, University of Sorocaba (UNISO), Sorocaba, SP, 18023-000, Brazil.
  • Goldbeck R; School of Food Engineering, University of Campinas (UNICAMP), Campinas, SP, 13083-862, Brazil.
  • Franco TT; Interdisciplinary Centre of Energy Planning, University of Campinas (UNICAMP), Campinas, SP, 13083-896, Brazil.
  • Leak D; Environment and Technological Processes Program, University of Sorocaba (UNISO), Sorocaba, SP, 18023-000, Brazil.
  • Jin YS; Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, 13083-862, Brazil.
  • Basso TO; Departament of Bioprocesses and Biotechnology, School of Agriculture, Sao Paulo State University (UNESP), Botucatu, SP, 18618-687, Brazil.
Sci Rep ; 13(1): 19182, 2023 11 06.
Article en En | MEDLINE | ID: mdl-37932303
Simultaneous intracellular depolymerization of xylo-oligosaccharides (XOS) and acetate fermentation by engineered Saccharomyces cerevisiae offers significant potential for more cost-effective second-generation (2G) ethanol production. In the present work, the previously engineered S. cerevisiae strain, SR8A6S3, expressing enzymes for xylose assimilation along with an optimized route for acetate reduction, was used as the host for expressing two ß-xylosidases, GH43-2 and GH43-7, and a xylodextrin transporter, CDT-2, from Neurospora crassa, yielding the engineered SR8A6S3-CDT-2-GH34-2/7 strain. Both ß-xylosidases and the transporter were introduced by replacing two endogenous genes, GRE3 and SOR1, that encode aldose reductase and sorbitol (xylitol) dehydrogenase, respectively, and catalyse steps in xylitol production. The engineered strain, SR8A6S3-CDT-2-GH34-2/7 (sor1Δ gre3Δ), produced ethanol through simultaneous XOS, xylose, and acetate co-utilization. The mutant strain produced 60% more ethanol and 12% less xylitol than the control strain when a hemicellulosic hydrolysate was used as a mono- and oligosaccharide source. Similarly, the ethanol yield was 84% higher for the engineered strain using hydrolysed xylan, compared with the parental strain. Xylan, a common polysaccharide in lignocellulosic residues, enables recombinant strains to outcompete contaminants in fermentation tanks, as XOS transport and breakdown occur intracellularly. Furthermore, acetic acid is a ubiquitous toxic component in lignocellulosic hydrolysates, deriving from hemicellulose and lignin breakdown. Therefore, the consumption of XOS, xylose, and acetate expands the capabilities of S. cerevisiae for utilization of all of the carbohydrate in lignocellulose, potentially increasing the efficiency of 2G biofuel production.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Saccharomyces cerevisiae / Xilosidasas Idioma: En Revista: Sci Rep Año: 2023 Tipo del documento: Article País de afiliación: Brasil Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Saccharomyces cerevisiae / Xilosidasas Idioma: En Revista: Sci Rep Año: 2023 Tipo del documento: Article País de afiliación: Brasil Pais de publicación: Reino Unido