Your browser doesn't support javascript.
loading
Photomobile Polymer-Piezoelectric Composite for Enhanced Actuation and Energy Generation.
Sagnelli, Domenico; D'Avino, Amalia; Rippa, Massimo; Vestri, Ambra; Marchesano, Valentina; Nenna, Giuseppe; Villani, Fulvia; Ardila, Gustavo; Centi, Sonia; Ratto, Fulvio; Petti, Lucia.
Afiliación
  • Sagnelli D; Institute of Applied Sciences and Intelligent Systems of CNR, Pozzuoli 80072, Italy.
  • D'Avino A; Institute of Applied Sciences and Intelligent Systems of CNR, Pozzuoli 80072, Italy.
  • Rippa M; Institute of Applied Sciences and Intelligent Systems of CNR, Pozzuoli 80072, Italy.
  • Vestri A; Institute of Applied Sciences and Intelligent Systems of CNR, Pozzuoli 80072, Italy.
  • Marchesano V; Institute of Applied Sciences and Intelligent Systems of CNR, Pozzuoli 80072, Italy.
  • Nenna G; Energy and Sustainable Economic Development, ENEA, Italian National Agency for New Technologies, Portici Research Centre, Portici, Naples 80055, Italy.
  • Villani F; Energy and Sustainable Economic Development, ENEA, Italian National Agency for New Technologies, Portici Research Centre, Portici, Naples 80055, Italy.
  • Ardila G; CNRS, Grenoble INP, IMEP-LaHC, Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, Grenoble F-38000, France.
  • Centi S; Nello Carrara Institute of Applied Physics of CNR, Sesto Fiorentino 50019, Italy.
  • Ratto F; Nello Carrara Institute of Applied Physics of CNR, Sesto Fiorentino 50019, Italy.
  • Petti L; Institute of Applied Sciences and Intelligent Systems of CNR, Pozzuoli 80072, Italy.
ACS Appl Opt Mater ; 1(10): 1651-1660, 2023 Oct 27.
Article en En | MEDLINE | ID: mdl-37915969
In this study, we present an innovative approach to increase the quantum yield and wavelength sensitivity of photomobile polymer (PMP) films based on azobenzene by doping the polymer matrix with noble metal nanoparticles. These doped PMP films showed faster and more significant bending under both UV as well as visible and near-infrared light regardless of whether it was coherent, incoherent, polarized, or unpolarized irradiation, expanding the potential of PMP-based actuators. To illustrate their practical implications, we created a proof-of-concept model of power generation by coupling it to flexible piezoelectric materials under simulated sunlight. This model has been tested under real operating conditions, thus demonstrating the possibility of generating electricity with variable light exposure. Additionally, our synthetic protocol is solvent-free, which is another benefit of environmental relevance. Our research lays the groundwork for the development of sunlight-sensitive devices, such as photomechanical actuators and advanced photovoltaic modules, which may break ground in the thriving field of smart materials. We are confident that the presented findings will contribute to the ongoing discourse in the field and inspire additional advances in renewable energy applications.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Appl Opt Mater Año: 2023 Tipo del documento: Article País de afiliación: Italia Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Appl Opt Mater Año: 2023 Tipo del documento: Article País de afiliación: Italia Pais de publicación: Estados Unidos