Photomobile Polymer-Piezoelectric Composite for Enhanced Actuation and Energy Generation.
ACS Appl Opt Mater
; 1(10): 1651-1660, 2023 Oct 27.
Article
en En
| MEDLINE
| ID: mdl-37915969
In this study, we present an innovative approach to increase the quantum yield and wavelength sensitivity of photomobile polymer (PMP) films based on azobenzene by doping the polymer matrix with noble metal nanoparticles. These doped PMP films showed faster and more significant bending under both UV as well as visible and near-infrared light regardless of whether it was coherent, incoherent, polarized, or unpolarized irradiation, expanding the potential of PMP-based actuators. To illustrate their practical implications, we created a proof-of-concept model of power generation by coupling it to flexible piezoelectric materials under simulated sunlight. This model has been tested under real operating conditions, thus demonstrating the possibility of generating electricity with variable light exposure. Additionally, our synthetic protocol is solvent-free, which is another benefit of environmental relevance. Our research lays the groundwork for the development of sunlight-sensitive devices, such as photomechanical actuators and advanced photovoltaic modules, which may break ground in the thriving field of smart materials. We are confident that the presented findings will contribute to the ongoing discourse in the field and inspire additional advances in renewable energy applications.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
ACS Appl Opt Mater
Año:
2023
Tipo del documento:
Article
País de afiliación:
Italia
Pais de publicación:
Estados Unidos