Your browser doesn't support javascript.
loading
Machine learning-based prediction of methane production from lignocellulosic wastes.
Song, Chao; Cai, Fanfan; Yang, Shuang; Wang, Ligong; Liu, Guangqing; Chen, Chang.
Afiliación
  • Song C; College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
  • Cai F; College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
  • Yang S; College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
  • Wang L; College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
  • Liu G; College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
  • Chen C; College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China. Electronic address: chenchang@mail.buct.edu.cn.
Bioresour Technol ; 393: 129953, 2024 Feb.
Article en En | MEDLINE | ID: mdl-37914053
The biochemical methane potential test is a standard method to determine the biodegradability of lignocellulosic wastes (LWs) during anaerobic digestion (AD) with disadvantages of long experiment duration and high operating expense. This paper developed a machine learning model to predict the cumulative methane yield (CMY) using the data of 157 LWs regarding physicochemical characteristics, digestion condition and methane yield, with the coefficient of determination equal to 0.869. Model interpretability analyses underscored lignin content, organic loading, and nitrogen content as pivotal attributes for CMY prediction. For the feedstocks with a cellulose content exceeding about 50%, the CMY in the early AD stage would be relatively lower than those with low cellulose content, but prolonging digestion time could promote methane production. Besides, lignin content in feedstock surpassing 15% would significantly inhibit methane production. This work contributes to valuable guidance for feedstock selection and operation optimization for AD plants.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Celulosa / Lignina Idioma: En Revista: Bioresour Technol Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Celulosa / Lignina Idioma: En Revista: Bioresour Technol Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Reino Unido