Your browser doesn't support javascript.
loading
Coral endosymbiont growth is enhanced by metabolic interactions with bacteria.
Matthews, Jennifer L; Khalil, Abeeha; Siboni, Nachshon; Bougoure, Jeremy; Guagliardo, Paul; Kuzhiumparambil, Unnikrishnan; DeMaere, Matthew; Le Reun, Nine M; Seymour, Justin R; Suggett, David J; Raina, Jean-Baptiste.
Afiliación
  • Matthews JL; Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, 2007, Australia. Jennifer.Matthews@uts.edu.au.
  • Khalil A; Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
  • Siboni N; Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
  • Bougoure J; Centre for Microscopy, Characterisation and Analysis, University of Western Australia, Perth, WA, 6009, Australia.
  • Guagliardo P; Centre for Microscopy, Characterisation and Analysis, University of Western Australia, Perth, WA, 6009, Australia.
  • Kuzhiumparambil U; Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
  • DeMaere M; Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
  • Le Reun NM; Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
  • Seymour JR; Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
  • Suggett DJ; Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
  • Raina JB; KAUST Reefscape Restoration Initiative (KRRI) and Red Sea Research Center (RSRC), King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia.
Nat Commun ; 14(1): 6864, 2023 10 27.
Article en En | MEDLINE | ID: mdl-37891154
Bacteria are key contributors to microalgae resource acquisition, competitive performance, and functional diversity, but their potential metabolic interactions with coral microalgal endosymbionts (Symbiodiniaceae) have been largely overlooked. Here, we show that altering the bacterial composition of two widespread Symbiodiniaceae species, during their free-living stage, results in a significant shift in their cellular metabolism. Indeed, the abundance of monosaccharides and the key phytohormone indole-3-acetic acid (IAA) were correlated with the presence of specific bacteria, including members of the Labrenzia (Roseibium) and Marinobacter genera. Single-cell stable isotope tracking revealed that these two bacterial genera are involved in reciprocal exchanges of carbon and nitrogen with Symbiodiniaceae. We identified the provision of IAA by Labrenzia and Marinobacter, and this metabolite caused a significant growth enhancement of Symbiodiniaceae. By unravelling these interkingdom interactions, our work demonstrates how specific bacterial associates fundamentally govern Symbiodiniaceae fitness.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Dinoflagelados / Antozoos / Rhodobacteraceae Límite: Animals Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2023 Tipo del documento: Article País de afiliación: Australia Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Dinoflagelados / Antozoos / Rhodobacteraceae Límite: Animals Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2023 Tipo del documento: Article País de afiliación: Australia Pais de publicación: Reino Unido