Your browser doesn't support javascript.
loading
Bayesian-frequentist hybrid inference framework for single cell RNA-seq analyses.
Han, Gang; Yan, Dongyan; Sun, Zhe; Fang, Jiyuan; Chang, Xinyue; Wilson, Lucas; Liu, Yushi.
Afiliación
  • Han G; Epidemiology & Biostatistics, 212 Adriance Lab Rd, 1266 TAMU College Station, TX 77843.
  • Yan D; Eli Lilly and Company Corporate Center, 893 Delaware St, Indianapolis, IN 46225.
  • Sun Z; Eli Lilly and Company Corporate Center, 893 Delaware St, Indianapolis, IN 46225.
  • Fang J; Eli Lilly and Company Corporate Center, 893 Delaware St, Indianapolis, IN 46225.
  • Chang X; Eli Lilly and Company Corporate Center, 893 Delaware St, Indianapolis, IN 46225.
  • Wilson L; Epidemiology & Biostatistics, 212 Adriance Lab Rd, 1266 TAMU College Station, TX 77843.
  • Liu Y; Eli Lilly and Company Corporate Center, 893 Delaware St, Indianapolis, IN 46225.
Res Sq ; 2023 Oct 03.
Article en En | MEDLINE | ID: mdl-37886581
Background: Single cell RNA sequencing technology (scRNA-seq) has been proven useful in understanding cell-specific disease mechanisms. However, identifying genes of interest remains a key challenge. Pseudo-bulk methods that pool scRNA-seq counts in the same biological replicates have been commonly used to identify differentially expressed genes. However, such methods may lack power due to the limited sample size of scRNA-seq datasets, which can be prohibitively expensive. Results: Motivated by this, we proposed to use the Bayesian-frequentist hybrid (BFH) framework to increase the power. Conclusion: In our idiopathic pulmonary fibrosis (IPF) case study, we demonstrated that with a proper informative prior, the BFH approach identified more genes of interest. Furthermore, these genes were reasonable based on the current knowledge of IPF. Thus, the BFH offers a unique and flexible framework for future scRNA-seq analyses.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Res Sq Año: 2023 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Res Sq Año: 2023 Tipo del documento: Article Pais de publicación: Estados Unidos