Targeting allosteric binding site in methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) to identify natural product inhibitors via structure-based computational approach.
Sci Rep
; 13(1): 18090, 2023 10 23.
Article
en En
| MEDLINE
| ID: mdl-37872243
Cancer has been viewed as one of the deadliest diseases worldwide. Among various types of cancer, breast cancer is the most common type of cancer in women. Methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) is a promising druggable target and is overexpressed in cancerous cells, like, breast cancer. We conducted structure-based modeling on the allosteric site of the enzyme. Targeting the allosteric site avoids the problem of drug resistance. Pharmacophore modeling, molecular docking, HYDE assessment, drug-likeness, ADMET predictions, simulations, and free-energy calculations were performed. The RMSD, RMSF, RoG, SASA, and Hydrogen-bonding studies showed that seven candidates displayed stable behaviour. As per the literature, average superimposed simulated structures revealed a similar protein conformational change in the αE'-ßf' loop, causing its displacement away from the allosteric site. The MM-PBSA showed tight binding of six compounds with the allosteric pocket. The effect of inhibitors interacting in the allosteric site causes a decrease in the binding energy of J49 (active-site inhibitor), suggesting the effect of allosteric binding. The PCA and FEL analysis revealed the significance of the docked compounds in the stable behaviour of the complexes. The outcome can contribute to the development of potential natural products with drug-like properties that can inhibit the MTHFD2 enzyme.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Productos Biológicos
/
Neoplasias
Límite:
Female
/
Humans
Idioma:
En
Revista:
Sci Rep
Año:
2023
Tipo del documento:
Article
País de afiliación:
India
Pais de publicación:
Reino Unido