Your browser doesn't support javascript.
loading
Methods for extending working distance using modified photonic crystal for near-field lithography.
Zhang, Wen-Peng; Li, Xiao-Tian; Dai, Jin-Hong; Wen, Zhong-Quan; Zhou, Yi; Chen, Gang; Liang, Gaofeng.
Afiliación
  • Zhang WP; Key Laboratory of Optoelectronic Technology & Systems (Chongqing University), Ministry of Education, and College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, People's Republic of China.
  • Li XT; Key Laboratory of Optoelectronic Technology & Systems (Chongqing University), Ministry of Education, and College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, People's Republic of China.
  • Dai JH; Key Laboratory of Optoelectronic Technology & Systems (Chongqing University), Ministry of Education, and College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, People's Republic of China.
  • Wen ZQ; Key Laboratory of Optoelectronic Technology & Systems (Chongqing University), Ministry of Education, and College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, People's Republic of China.
  • Zhou Y; Key Laboratory of Optoelectronic Technology & Systems (Chongqing University), Ministry of Education, and College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, People's Republic of China.
  • Chen G; Key Laboratory of Optoelectronic Technology & Systems (Chongqing University), Ministry of Education, and College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, People's Republic of China.
  • Liang G; Key Laboratory of Optoelectronic Technology & Systems (Chongqing University), Ministry of Education, and College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, People's Republic of China.
Nanotechnology ; 35(5)2023 Nov 15.
Article en En | MEDLINE | ID: mdl-37863077
Near-field lithography has evident advantages in fabricating super-resolution nano-patterns. However, the working distance (WD) is limited due to the exponential decay characteristic of the evanescent waves. Here, we proposed a novel photolithography method based on a modified photonic crystal (PC), where a defect layer is embedded into the all-dielectric multilayer structure. It is shown that this design can amend the photonic band gap and enhance the desired high-kwaves dramatically, then the WD in air conditions could be extended greatly, which would drastically relax the engineering challenges for introducing the near-field lithography into real-world manufacturing applications. Typically, deep subwavelength patterns with a half-pitch of 32 nm (i.e.,λ/6) could be formed in photoresist layer at an air WD of 100 nm. Moreover, it is revealed that diversified two-dimensional patterns could be produced with a single exposure using linear polarized light. The analyses indicate that this improved dielectric PC is applicable for near-field lithography to produce super-resolution periodic patterns with large WD, strong field intensity, and great uniformity.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nanotechnology Año: 2023 Tipo del documento: Article Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nanotechnology Año: 2023 Tipo del documento: Article Pais de publicación: Reino Unido