Artificial gauge fields in the t-z mapping for optical pulses: Spatiotemporal wave packet control and quantum Hall physics.
Sci Adv
; 9(42): eadj0360, 2023 Oct 20.
Article
en En
| MEDLINE
| ID: mdl-37862408
We extend the t-z mapping of time-dependent paraxial optics by engineering a synthetic magnetic vector potential, leading to a nontrivial band topology. We consider an inhomogeneous 1D array of coupled optical waveguides and show that the wave equation describing paraxial propagation of optical pulses can be recast as a Schrödinger equation, including a synthetic magnetic field whose strength can be controlled via the spatial gradient of the waveguide properties across the array. We use an experimentally motivated model of a laser-written array to demonstrate that this synthetic magnetic field can be engineered in realistic setups and can produce interesting physics such as cyclotron motion, a controllable Hall drift of the pulse in space or time, and propagation in chiral edge states. These results substantially extend the physics that can be explored within propagating geometries and pave the way for higher-dimensional topological physics and strongly correlated fluids of light.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
Sci Adv
Año:
2023
Tipo del documento:
Article
Pais de publicación:
Estados Unidos